The answer is variant C because every living organism needs water to survive. A human can live without water only 6 days, after that period the most important organs start to shut down because of the lack of water.
The distance an object falls, from rest, in gravity is
D = (1/2) (G) (T²)
'T' is the number seconds it falls.
In this problem,
0.92 meter = (1/2) (9.8) (T²)
Divide each side by 4.9 : 0.92 / 4.9 = T²
Take the square root
of each side: √(0.92/4.9) = T
0.433 sec = T
The horizontal speed doesn't make a bit of difference in
how long it takes to reach the floor. BUT ... if you want to
know how far from the table the pencil lands, you can find
that with the horizontal speed.
The pencil is in the air for 0.433 second.
In that time, it travels
(0.433s) x (1.4 m/s) = 0.606 meter
from the edge of the table.
Answer:
D) Vertically.
Explanation:
A free body diagram is used to represent all the forces acting in a body. forces like, the force of gravity as a result of the gravitational interaction between the object and the Earth (W), the frictional force opposite to the movement of the object (
), the normal force due to the plane and the object (N) and the force applied to start the movement in a particular direction (F).
As is show in the free body diagram of the system, W, which is the weight of the body as a consequence of the gravitational force, is at an angle
below the inclined plane. that angle between the plane and the x axis is the same that the one of the inclined plane with respect to the horizontal, Since its sides are perpendicular.
Notice how W goes always in the direction to the center of mass of Earth in a vertical path (For comparison see figure (a) and (b)).
Answer:
a) 
b) 
Explanation:
given,
n =1.5 for glass surface
n = 1 for air
incidence angle = 45°
using Fresnel equation of reflectivity of S and P polarized light

using snell's law to calculate θ t


a) 

b) 

So first we find the gap between the slits by the formula d=1/N
<span>N is number of lines per metre so 3700 line/cm = 370000 lines/m </span>
<span>So d=2.7*10^-6 </span>
<span>Now we use the formula dsin(angle)=n(wavelength) </span>
<span>d is the same </span>
<span>n is the order of the diffraction pattern </span>
<span>so wavelenth=dsin(angle)/n </span>
<span>=[(2.7*10^-6)*sin30]/3 </span>
<span>=4.5*10^-7 m</span>