23.1 can be estimated to 23 rounded to 20.
19.24 can be estimated to 19 rounded to 20.
The answer would be 42 which would be rounded to 40.
The answer is X^2-xy+2x^2y sorry if I am wrong
Answer:
A. ![y=-\dfrac{8}{7}x-\dfrac{18}{7}](https://tex.z-dn.net/?f=y%3D-%5Cdfrac%7B8%7D%7B7%7Dx-%5Cdfrac%7B18%7D%7B7%7D)
Step-by-step explanation:
Let
be the equation of the perpendicular line.
Two perpendicular lines have slopes with product equal to -1. The slope of the given line is
Hence,
![\dfrac{7}{8}\cdot m=-1\\ \\m=-\dfrac{8}{7}](https://tex.z-dn.net/?f=%5Cdfrac%7B7%7D%7B8%7D%5Ccdot%20m%3D-1%5C%5C%20%5C%5Cm%3D-%5Cdfrac%7B8%7D%7B7%7D)
is the slope of needed line.
This line passes through the point (-4,2), so its coordinates satisfy the equation:
![2=-\dfrac{8}{7}\cdot (-4)+b\\ \\b=2-\dfrac{32}{7}=-\dfrac{18}{7}](https://tex.z-dn.net/?f=2%3D-%5Cdfrac%7B8%7D%7B7%7D%5Ccdot%20%28-4%29%2Bb%5C%5C%20%5C%5Cb%3D2-%5Cdfrac%7B32%7D%7B7%7D%3D-%5Cdfrac%7B18%7D%7B7%7D)
Therefore, the equation of the line is
![y=-\dfrac{8}{7}x-\dfrac{18}{7}](https://tex.z-dn.net/?f=y%3D-%5Cdfrac%7B8%7D%7B7%7Dx-%5Cdfrac%7B18%7D%7B7%7D)
Check the picture below.
now, you can pretty much count the units off the grid for the segments ST and RU, so each is 7 units long, and are parallel, meaning that the other two segments are also parallel, and therefore the same length each.
so we can just find the length for hmmmm say SR, since SR = TU, TU is the same length,
![\bf ~~~~~~~~~~~~\textit{distance between 2 points} \\\\ S(\stackrel{x_1}{-2}~,~\stackrel{y_1}{1})\qquad R(\stackrel{x_2}{-5}~,~\stackrel{y_2}{5})\qquad \qquad % distance value d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2} \\\\\\ SR=\sqrt{[-5-(-2)]^2+[5-1]^2}\implies SR=\sqrt{(-5+2)^2+(5-1)^2} \\\\\\ SR=\sqrt{(-3)^2+4^2}\implies SR=\sqrt{25}\implies SR=5](https://tex.z-dn.net/?f=%5Cbf%20~~~~~~~~~~~~%5Ctextit%7Bdistance%20between%202%20points%7D%0A%5C%5C%5C%5C%0AS%28%5Cstackrel%7Bx_1%7D%7B-2%7D~%2C~%5Cstackrel%7By_1%7D%7B1%7D%29%5Cqquad%20%0AR%28%5Cstackrel%7Bx_2%7D%7B-5%7D~%2C~%5Cstackrel%7By_2%7D%7B5%7D%29%5Cqquad%20%5Cqquad%20%0A%25%20%20distance%20value%0Ad%20%3D%20%5Csqrt%7B%28%20x_2-%20x_1%29%5E2%20%2B%20%28%20y_2-%20y_1%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0ASR%3D%5Csqrt%7B%5B-5-%28-2%29%5D%5E2%2B%5B5-1%5D%5E2%7D%5Cimplies%20SR%3D%5Csqrt%7B%28-5%2B2%29%5E2%2B%285-1%29%5E2%7D%0A%5C%5C%5C%5C%5C%5C%0ASR%3D%5Csqrt%7B%28-3%29%5E2%2B4%5E2%7D%5Cimplies%20SR%3D%5Csqrt%7B25%7D%5Cimplies%20SR%3D5)
sum all segments up, and that's perimeter.
Answer:
<u>Distance</u><u> </u><u>between</u><u> </u><u>the</u><u> </u><u>points</u><u> </u><u>is</u><u> </u><u>8</u><u>.</u><u>9</u><u>4</u><u> </u><u>units</u>
Step-by-step explanation:
General formula:
![{ \boxed{ \bf{distance = \sqrt{ {(x_{1} - x _{2} )}^{2} + {(y _{1} - y _{2} ) }^{2} } }}}](https://tex.z-dn.net/?f=%7B%20%5Cboxed%7B%20%5Cbf%7Bdistance%20%3D%20%20%5Csqrt%7B%20%7B%28x_%7B1%7D%20-%20x%20_%7B2%7D%20%29%7D%5E%7B2%7D%20%2B%20%20%7B%28y%20_%7B1%7D%20-%20y%20_%7B2%7D%20%29%20%7D%5E%7B2%7D%20%20%7D%20%7D%7D%7D)
substitute:
![{ \sf{ = \sqrt{ {(5 - ( - 3))}^{2} + {(8 - 4)}^{2} } }} \\ = { \sf{ \sqrt{64 + 16} }} \\ = { \sf{ \sqrt{80} }} \\ = 8.94 \: units](https://tex.z-dn.net/?f=%7B%20%5Csf%7B%20%3D%20%20%5Csqrt%7B%20%7B%285%20-%20%28%20-%203%29%29%7D%5E%7B2%7D%20%20%2B%20%20%7B%288%20-%204%29%7D%5E%7B2%7D%20%7D%20%7D%7D%20%5C%5C%20%20%3D%20%7B%20%20%5Csf%7B%20%5Csqrt%7B64%20%2B%2016%7D%20%7D%7D%20%5C%5C%20%20%3D%20%7B%20%5Csf%7B%20%5Csqrt%7B80%7D%20%7D%7D%20%5C%5C%20%20%3D%208.94%20%5C%3A%20units)
![{ \underline{ \sf{ \blue{christ \: † \: alone}}}}](https://tex.z-dn.net/?f=%7B%20%5Cunderline%7B%20%5Csf%7B%20%5Cblue%7Bchrist%20%5C%3A%20%E2%80%A0%20%5C%3A%20alone%7D%7D%7D%7D)