Answer:
5.1
Step-by-step explanation:
14^-2*1000
Answer:
In centimeters, it would be 40.64 centimeters.
Answer:
The fourth term of the expansion is -220 * x^9 * y^3
Step-by-step explanation:
Question:
Find the fourth term in (x-y)^12
Solution:
Notation: "n choose k", or combination of k objects from n objects,
C(n,k) = n! / ( k! (n-k)! )
For example, C(12,4) = 12! / (4! 8!) = 495
Using the binomial expansion formula
(a+b)^n
= C(n,0)a^n + C(n,1)a^(n-1)b + C(n,2)a^(n-2)b^2 + C(n,3)a^(n-3)b^3 + C(n,4)a^(n-4)b^4 +....+C(n,n)b^n
For (x-y)^12, n=12, k=3, a=x, b=-y, and the fourth term is
C(n,3)a^(n-3)b^3
=C(12,3) * x^(12-3) * (-y)^(3)
= 220*x^9*(-y)^3
= -220 * x^9 * y^3
<em>Answer: “As much wood as a woodchuck could chuck, If a woodchuck could chuck wood.) Researchers at Cornell determined that a woodchuck could chuck about 700 pounds: </em>
Answer:
To write a two-variable equation, I would first need to know how much Maya’s allowance was. Then, I would need the cost of playing the arcade game and of riding the Ferris wheel. I could let the equation be cost of playing the arcade games plus cost of riding the Ferris wheel equals the total allowance. My variables would represent the number of times Maya played the arcade game and the number of times she rode the Ferris wheel. With this equation I could solve for how many times she rode the Ferris wheel given the number of times she played the arcade game.
Step-by-step explanation: