Polyatomic ions:
,
,
,
,
, and 
Monatomic ions:
,
, and 
<h3>Monoatomic vs Polyatomic Ions</h3>
In chemistry, monoatomic ions are ions that consist of only a single type of atom. They are usually positive or negatively charged and are otherwise known as simple ions. Examples include
,
, and 
Polyatomic ions, on the other hand, are ions that consist of more than one atom, unlike monoatomic ions. The two or more atoms are covalently bonded and the entire structure behaves like a single chemical entity in reactions. Polyatomic ions are otherwise known as molecular ions.
Examples of polyatomic ions are
,
,
,
,
, and 
Thus, from the diagram:
- Polyatomic ions:
,
,
,
,
, and 
More on ions can be found here: brainly.com/question/14982375
#SPJ1
Each column is called a group<span>. The elements in each </span>group have<span> the same number of electrons in the outer orbital. Those outer electrons are also called valence electrons.</span>
Answer:
1.42 M
Explanation:
First calculate the amount of moles.
that's done by dividing the mass with the molecular mass so 660g / 310.18 g/mol = 2.13 mol
Then you can calculate the molarity by dividing the moles with the volume so 2.13 mol / 1.5 l = 1.42 M
(without rounding: 1.418531175 M)
Answer:
A. The pressure will increase 4 times. P₂ = 4 P₁
B. The pressure will decrease to half its value. P₂ = 0.5 P₁
C. The pressure will decrease to half its value. P₂ = 0.5 P₁
Explanation:
Initially, we have n₁ moles of a gas that occupy a volume V₁ at temperature T₁ and pressure P₁.
<em>What would happen to the gas pressure inside the cylinder if you do the following?</em>
<em />
<em>Part A: Decrease the volume to one-fourth the original volume while holding the temperature constant. Express your answer in terms of the variable P initial.</em>
V₂ = 0.25 V₁. According to Boyle's law,
P₁ . V₁ = P₂ . V₂
P₁ . V₁ = P₂ . 0.25 V₁
P₁ = P₂ . 0.25
P₂ = 4 P₁
<em>Part B: Reduce the Kelvin temperature to half its original value while holding the volume constant. Express your answer in terms of the variable P initial.</em>
T₂ = 0.5 T₁. According to Gay-Lussac's law,

<em>Part C: Reduce the amount of gas to half while keeping the volume and temperature constant. Express your answer in terms of the variable P initial.</em>
n₂ = 0.5 n₁.
P₁ in terms of the ideal gas equation is:

P₂ in terms of the ideal gas equation is:

Number 9 adding oil lubricates the chain making it easier to pedal. Also the oil prevents rusting