The correct answer is A, B and C
Answer:
Explanation:
In this chemistry lab, students investigate how to build and launch a simple rocket that uses hydrogen and oxygen gases that will be mixed to propel the rocket (large bulb plastic pipette). Students will understand the principles of combustion reactions, kinetics, stoichiometry of reactions, activation energy, explosive mixtures, rocketry, and different types of chemical reactions. Students will explore and determine the proportions of hydrogen and oxygen mixture that will achieve the best launch results. Students will compare the balanced chemical reaction of hydrogen and oxygen with their lab results; students should discover that the optimal distance occurs when the mixture of hydrogen and oxygen is two to one hydrogen, oxygen mixture ratio and this can be determined theoretically from the balanced chemical reaction equation. Students will perform the lab, collect data, and discuss, compare, and contrast their lab findings with the balanced chemical reaction equation. Students will present their structured inquiry investigations using a power-point presentation. Other groups along with the teacher will assess each group by using a provided rubric. Group assessments will be the deciding assessment for the final lab score. A follow up activity could investigate how NASA scientists launch real rockets into space and propose a procedure to investigate and collect data on a launching a heavier object at the school football field.
Answer:
0.013%
Yes, it does. The answer agrees with the statement.
Explanation:
Both conformers are in equilibrium, and it can be represented by the equilibrium equation K:
K = [twist-boat]/[chair]
The free energy between them can be calculated by:
ΔG° = -RTlnK
Where R is the gas constant (8.314 J/mol.K), and T is the temperature (25°C + 273 = 298 K).
ΔG° = 5.3 kcal/mol * 4.182 kJ/kcal = 22.165 kJ/mol = 22165 J/mol
22165 = -8.314*298*lnK
-2477.572lnK = 22165
lnK = -8.946
K = 
K = 1.30x10⁻⁴
[twist-boat]/[chair] = 1.30x10⁻⁴
[twist-boat] = 1.30x10⁻⁴[chair]
The percentage of the twist-boat conformer is:
[twist-boat]/([twist-boat] + [chair]) * 100%
1.30x10⁻⁴[chair]/(1.30x10⁻⁴[chair] + [chair]) *100%
0.013%
The statement about the conformers is that the chair conformer is more stable, and because of that is more present. So, the answer agrees with it.
V₁ = 420 mL
T₁ = 210 K
V₂ = ?
T₂ = 250 K
(Answer is 500 mL)
Metals is the right answer.