Answer:
Explanation:
Given:
length of ladder 
weight of ladder 
position of firefighter 
weight of firefighter 
angle of ladder 
Unknown:
force of the wall on the ladder 
force of friction on base of ladder 
normal force on base of ladder 
From the free body diagram of the sketch you get 3 equations:

Solving the equations gives:

a)

b)

c) Using the result from b and solving for 

Answer:

Explanation:
information we know:
Total force: 
Weight: 
distance: 
vertical component of the force: 
-------------
In this case we need the formulas to calculate the components of the force (because to calculate the work we need the horizontal component of the force).
horizontal component: 
vertical component: 
but from the given information we know that 
so, equation these two
and 

and we know the force
, thus:

now we clear for 

the angle to the horizontal is 15.466°, with this information we can calculate the horizontal component of the force:


whith this horizontal component we calculate the work to move the crate a distance of 4 m:

the work done is W=173.48J
Answer:
A
Explanation:
<em>The gold used in the making of jewelry is usually not pure but a heterogeneous mixture of metals. Pure gold is quite soft and even though it may look better in appearance compared to those made using heterogeneous mixtures, it usually bends easily. Hence, in order to make the jewelry more durable, gold is usually mixed with other metals to form a heterogeneous mixture. </em>
The correct option is A.
Answer:
A. water + carbon dioxide + sunlight = oxygen + <u>glucose </u><u>!</u>
Answer:
In the air
Explanation:
There are three states of matter:
- Solids: in solids, the particles are tightly bond together by strong intermolecular forces, so they cannot move freely - they can only vibrate around their fixed position
- Liquids: in liquids, particles are more free to move, however there are still some intermolecular forces keeping them close to each other
- Gases: in gases, particles are completely free to move, as the intermolecular forces between them are negligible
For this reason, it is generally easier to compress/expand the volume of a gas with respect to the volume of a liquid.
In this problem, we are comparing water (which is a liquid) with air (which is a gas). From what we said above, this means that the change in volume is larger in the air rather than in the water.