Answer:
Explanation:
Each coil increases it by a multiple of 100.
=> 50 | 3 | <u><em>15,000</em></u>
=> 100 | 3 | <u><em>30,000</em></u>
=> 150 | 3 | <u><em>45,000</em></u>
Using the ideal gas equation:
PV = nRT
Substituting n with mass / Mr
PV = mRT/Mr
Density = m/V
So rearranging:
Density = PMr/RT
P = 1 atm
R = 0.082 L atm / K mol
T = 273 K
Density = (1 x 80.6) / (0.082 x 273)
Density = 3.6 g / L
Answer:
[HI] = 0.7126 M
Explanation:
Step 1: Data given
Kc = 54.3
Temperature = 703 K
Initial concentration of H2 and I2 = 0.453 M
Step 2: the balanced equation
H2 + I2 ⇆ 2HI
Step 3: The initial concentration
[H2] = 0.453 M
[I2] = 0.453 M
[HI] = 0 M
Step 4: The concentration at equilibrium
[H2] = 0.453 - X
[I2] = 0.453 - X
[HI] = 2X
Step 5: Calculate Kc
Kc = [Hi]² / [H2][I2]
54.3 = 4x² / (0.453 - X(0.453-X)
X = 0.3563
[H2] = 0.453 - 0.3563 = 0.0967 M
[I2] = 0.453 - 0.3563 = 0.0967 M
[HI] = 2X = 2*0.3563 = 0.7126 M
The 2nd one I think but I need some points