Explanation:
30 minutes is 1800 seconds.
Power = energy / time
P = 1100 J / 1800 s
P = 0.611 W
Converting the energy from J to kWh:
1100 J × (1 Ws / 1 J) × (1 kW / 1000 W) × (1 h / 3600 s) = 3.06×10⁻⁴ kWh
To find resistance, you need to be given either the voltage or the current.
Answer:
Speed is the rate at which an object's position changes, measured in meters per second. The equation for speed is simple: distance divided by time
Explanation:
The mass affects the kinetic energy because the more the mass the more energy is given to the object and the speed<span> affects by making it go faster and longer, so whenever speed goes up so does energy.</span>
Answer:
The value is 
Explanation:
From the question we are told that
The mass of the ice cube is 
The temperature of the ice cube is
The mass of the copper cube is 
The final temperature of both substance is 
Generally form the law of thermal energy conservation,
The heat lost by the copper cube = heat gained by the ice cube
Generally the heat lost by the copper cube is mathematically represented as
![Q = m_c * c_c * [T_c - T_f ]](https://tex.z-dn.net/?f=Q%20%3D%20%20m_c%20%20%2A%20%20c_c%20%2A%20%20%5BT_c%20%20-%20%20T_f%20%5D)
The specific heat of copper is 
Generally the heat gained by the ice cube is mathematically represented as

Here L is the latent heat of fusion of the ice with value 
So

=>
So
=> 
The efficiency of the scissor is 200%.
<u>Explanation:</u>
Efficiency is defined as the ratio of output of any instrument or device or machine to the input supplied to it. So the greater the output the greater will be the efficiency of the device.
As here the work done by us on the system is said to be 10 J so this will be equal to the input work done on the system. And the work done by the system i.e., the scissor is 20 J, so this will be the output work.
So, the efficiency is the ratio of output to input as shown below.
Efficiency =
= 200
So, the efficiency of the scissor is 200%.