Answer:
Explanation:
"Rotation" refers to an object's spinning motion about its own axis. "Revolution" refers the object's orbital motion around another object. For example, Earth rotates on its own axis, producing the 24-hour day. Earth revolves about the Sun, producing the 365-day year.
Answer:
<h2>3.36J</h2>
Explanation:
Step one:
given data
mass m= 1.3kg
distance moved s= 2.8m
opposing frictional force= 0.34N
assume g= 9.81m/s^2
we know that work done= force *distance moved
1. work done to push the book= 1.55*2.8=4.34J
2. Work against friction = force of friction x distance
= 0.34*2.8=0.952J
Step two:
the work done on the book is the net work, which is
Network done= work done to push the book- Work against friction
Network done= 4.32-0.952=3.36J
<u>Therefore the work of the 1.55N 3.36J</u>
Answer:
The total amount of energy that would have been released if the asteroid hit earth = The kinetic energy of the asteroid = 1.29 × 10¹⁵ J = 1.29 PetaJoules = 1.29 PJ
1 PJ = 10¹⁵ J
Explanation:
Kinetic energy = mv²/2
velocity of the asteroid is given as 7.8 km/s = 7800 m/s
To obtain the mass, we get it from the specific gravity and diameter information given.
Density = specific gravity × 1000 = 3 × 1000 = 3000 kg/m³
But density = mass/volume
So, mass = density × volume.
Taking the informed assumption that the asteroid is a sphere,
Volume = 4πr³/3
Diameter = 30 m, r = D/2 = 15 m
Volume = 4π(15)³/3 = 14137.2 m³
Mass of the asteroid = density × volume = 3000 × 14137.2 = 42411501 kg = 4.24 × 10⁷ kg
Kinetic energy of the asteroid = mv²/2 = (4.24 × 10⁷)(7800²)/2 = 1.29 × 10¹⁵ J
Sexual reproduction. thats the answer i think