In stars more massive than the sun, the core temperature is hotter, which allows for fusion of more complex elements.
Most of the fusion occurs in the core.
In stars more massive than the sun, fusion continues through Deuterium, Carbon, and finally reaching iron/nickel.
Up to this point, the fusion reaction was endothermic, which means that the energy expended to produce the fusion reaction was exceeded by the energy produced in the reaction.
Fusion past iron is exothermic, and therefore the star will be able to survive by fusing elements heavier than iron.
After the core is almost entirely iron, the star is no longer in the Main Sequence.
So, fusion in stars more massive than the sun continue fusing until the core is almost entirely <em>iron</em>.
Early hypotheses were not based on observations.
Early hypotheses were not tested by experimentation.
Early hypotheses were formed from scientific questions.
Early hypotheses were influenced by creative thinking
Answer:
Toward the centre of the circular path
Explanation:
The can is moved in a circular path: this means that it is moving by circular motion (uniform circular motion if its tangential speed is constant).
In order to keep a circular motion, an object must have a force that pushes it towards the centre of the circular trajectory: this force is called centripetal force, and its magnitude is given by

where m is the mass of the object, v its tangential speed, r the radius of the trajectory. This force always points towards the centre of the circular path.
No they do not they just need to be in each other's magnetic field