
As long as the equation in question can be expressed as the sum of the three equations with known enthalpy change, its
can be determined with the Hess's Law. The key is to find the appropriate coefficient for each of the given equations.
Let the three equations with
given be denoted as (1), (2), (3), and the last equation (4). Let
,
, and
be letters such that
. This relationship shall hold for all chemicals involved.
There are three unknowns; it would thus take at least three equations to find their values. Species present on both sides of the equation would cancel out. Thus, let coefficients on the reactant side be positive and those on the product side be negative, such that duplicates would cancel out arithmetically. For instance,
shall resemble the number of
left on the product side when the second equation is directly added to the third. Similarly
Thus
and

Verify this conclusion against a fourth species involved-
for instance. Nitrogen isn't present in the net equation. The sum of its coefficient shall, therefore, be zero.

Apply the Hess's Law based on the coefficients to find the enthalpy change of the last equation.

Our bodies digest the food we eat by mixing it with fluids (acids and enzymes) in the stomach. When the stomach digests food, the carbohydrate (sugars and starches) in the food breaks down into another type of sugar, called glucose.
Answer:
Sample C is most likely the metal.
Explanation:
The Sample C is the metal, because the properties given in the sample c are all of the metal. As we know that the metals are the lustrous or the shiny elements. They are often good conductor of heat and also electricity. The metals possess high melting point. The density of the metals are heavy for their size. Metals can be easily hammered, and hence are malleable. They can easily be stretched into wires hence are ductile. They remains solid at room temperature but in case of mercury it remains as liquid. Metals are opaque object and cannot be see through it.
E. Traits are inherited when genes are passed from parents to offspring