(80+125+45) / 10 = 250/10 =25
25 meters per minute= 0.41 meters/second
the direction and stopping time is irrelevant to the problem.
Answer:

Explanation:
Hello,
In this case, by using the general gas law, that allows us to understand the pressure-volume-temperature relationship as shown below:

Thus, solving for the temperature at the end (considering absolute units of Kelvin), we obtain:

Best regards.
Pretty much, if I were going to separate small solid particles, I could use like a piece of paper. I used some type of piece of paper when I was trying to separate some particles during science.
A - 1 CH4+ 1 O2 = 1 CO2+2 H2
b - 2 Al+3 Cl2 = 2 AlCl3
c - 1 CH2O+ 1 H2 = 1 CH3OH
*The ones that have the coefficient of 1 you can leave blank but if you have to put a number just put 1
Answer:
CH₂ ; 67.1 %
Explanation:
To determine the empirical formula we need to find what the mole ratio is in whole numbers of the atoms in the compound. To do that we will first need the atomic weights of C and H and then perform our calculation
Assume 100 grams of the compound.
# mol C = 85.7 g / 12.01 g/mol = 7.14 mol
# mol H = 14.3 g / 1.008 g/mol = 14.19 mol
The proportion is 14.9 mol H/ 7.14 mol C = 2 mol H/ 1 mol C
So the empirical formula is CH₂
For the second part we will need to first calculate the theoretical yield for the 12.03 g NaBH₄ reacted and then calculate the percent yield given the 0.295 g B₂H₆ produced.
We need to calculate the moles of NaBH₄ ( M.W = 37.83 g/mol )
1.203 g NaBH₄ / 37.83 g/mol = 0.0318 mol
Theoretical yield from balanced chemical equation:
0.0318 mol NaBH₄ x 1 mol B₂H₆ / mol NaBH₄ = 0.0159 mol B₂H₆
Theoretical mass yield B₂H₆ = 0.0159 mol x 27.66 g/ mol = 0.440 g
% yield = 0.295 g/ 0.440 g x 100 = 67.1 %