Answer:
Hydrogen: -141 kJ/g
Methane: -55kJ/g
The energy released per gram of hydrogen in its combustion is higher than the energy released per gram of methane in its combustion.
Explanation:
According to the law of conservation of the energy, the sum of the heat released by the combustion and the heat absorbed by the bomb calorimeter is zero.
Qc + Qb = 0
Qc = -Qb [1]
We can calculate the heat absorbed by the bomb calorimeter using the following expression.
Q = C . ΔT
where,
C is the heat capacity
ΔT is the change in the temperature
<h3>Hydrogen</h3>
Qc = -Qb = -C . ΔT = -(11.3 kJ/°C) . (14.3°C) = -162 kJ
The heat released per gram of hydrogen is:
<h3>Methane</h3>
Qc = -Qb = -C . ΔT = -(11.3 kJ/°C) . (7.3°C) = -82 kJ
The heat released per gram of methane is:
The degree to which a specified material conducts electricity, calculated as the ratio of the card density in the material to the electric field that causes the flow of current. It is the reciprocal of the resistivity.
Answer:
Covalent bond is a type of bond involves the bonding of two ions of opposite charges.
<h3>
<u>PLEASE</u><u> MARK</u><u> ME</u><u> BRAINLIEST</u><u>.</u></h3>
The question is incomplete. Complete question is attached below:
...........................................................................................................................
Answer:
Given: conc. of HBr = 1.4 M
Volume of HBr = 15.4 mL
Volume of KOH = 22.10 mL
We know that, M1V1 = M2V2
(HBr) (KOH)
Therefore, M2 = M1V1/V2
= 1.4 X 15.4/22.10
= 0.9756 M
Concentration of KOH is 0.9756 M.