heh.......... sorry man............... but this was posted over 5 hours ago........ so nobody is gonna see it and you probably dont need the answer anymore..... so errrr..... imma justtttt..... take these points :D
The answer is in the bladder.
Answer:
We know that
ħf = ф + Ekmax
where
ħ = planks constant = 6.626x10^-34 J s
f = frequency of incident light = 1.3x10^15 /s (1 Hz =
1/s)
ф = work function of the cesium = 2.14 eV
Ekmax = max kinetic energy of the emmitted electron.
We distinguish that:
1 eV = 1.602x10^-19 J
So:
2.14 eV x (1.602x10^-19 J / 1 eV) = 3.428x10^-19 J
So,
Ekmax = (6.626x10^-34 J s) x (1.3x10^15 / s) - 3.428x10^-19 J
= 8.6138x10^-19 J - 3.428x10^-19 J = 5.1858x10^-19 J
Answer:
5.19x10^-19 J
Kinetic energy:
In physics, the kinetic energy of an object is the energy that it owns due to its motion. It is defined as the work required accelerating a body of a given mass from rest to its specified velocity. Having expanded this energy during its acceleration, the body upholds this kinetic energy lest its speed changes.
Answer details:
Subject: Chemistry
Level: College
Keywords:
• Energy
• Kinetic energy
• Kinetic energy of emitted electrons
Learn more to evaluate:
brainly.com/question/4997492
brainly.com/question/4010464
brainly.com/question/1754173
Given the solubility of strontium arsenate is 0.0480 g/l . we have to convert it into mol/L by dividing it over molar mass (540.7 g/mol)
Molar solubility = 0.0480 / 540.7 = 8.9 x 10⁻⁵ mol/L
Dissociation equation:
Sr₃(AsO₄)₂(s) → 3 Sr²⁺(aq) + 2 AsO₄³⁻(aq)
3 s 2 s
Ksp = [Sr²⁺]³ [AsO₄³⁻]²
= (3s)³ (2s)²
= 108 s⁵
Ksp = 108 (8.9 x 10⁻⁵) = 5.95 x 10⁻¹⁹
Answer:
aqueous gallium chloride i think
Explanation: