The acid dissociation constant is 1.3 × 10^-3.
<h3>What is acid-dissociation constant?</h3>
The acid-dissociation constant is a constant that shows the extent of dissociation of an acid in solution. We have to set up the reaction equation as shown below;
Let the acid be HA;
HA + H2O ⇄ H3O^+ + A^-
since the pH of the solution is 2.57 then;
[H3O^+] = Antilog(-pH) = Antilog(-2.57) = 2.7 × 10^-3
We can see that; [H3O^+] = [A^-] so;
Ka = (2.7 × 10^-3)^2/(5.5 × 10^–3)
Ka = 1.3 × 10^-3
Learn more about acid-dissociation constant: brainly.com/question/9728159
The person above above above me is very very good awnswer hope this helps
Answer:
37S
Explanation:
Radioactivity is the spontaneous emission of particles and / or electromagnetic radiation by unstable atomic nuclei leading to their disintegration.
We have two main types of radioactivity: radioactive decay and artificial transmutation.
In radioactive decay ( natural radioactivity ), a naturally occurring radioactive element like Uranium-238 disintegrates or decays into more stable isotopes with the emission of particles and/or radiation.
23892U = 23490Th + 42He
Artificial transmutation is the collision of two particles where one particle captures the other used to bombard it. There is subsequent production of isotopes similar or different from the bombarded particle. Neutrons, alpha particles ( helium nucleus ), electrons, protons can be used to bombard elements.
147N + 42He = 178O + 11P
For the above question which is artificial transmutation, the reaction equation is
4018Ar + 10n = 3716S + 42He
So, the neutron capture by Argon-40 will produce a radioisotope Sulphur-37 with the emission of an alpha particle.
It is rinsed one last time with the solution to be measured because if there is water in the burret, then it could alter the results. Slightly, but it is still altering it.
__ KClO₃ → __ KCl + __ O₂
Left Side:
1 K
1 Cl
3 O
Right Side:
1 K
1 Cl
2 O
Since the least common multiple of 3 and 2 is 6, we need to multiply the compound with 2 oxygen by 3 and the compound with 3 oxygen by 2.
This gives us 2KClO₃ → __ KCl + 3O₂.
However, this equation is still not balanced.
Left Side:
2 K
2 Cl
6 O
Right Side:
1 K
1 Cl
6 O
In order to balance the K and Cl, we need to multiply the KCl compound on the right side by 2.
2KClO₃ → 2KCl + 3O₂