Answer:
signal, opening and merge.
Explanation:
As motorists drive onto the acceleration lane, they must get up to the speed limit, signal, find an opening and then merge.
Acceleration lane explanation: an speed variation area or lane of adjustment consisting of additional flooring on the edges of traffic lanes to allow acceleration of vehicles until merging with traffic flow .
<u>Voltage:</u>
It is basically the difference between the charges of the materials on the ends of the Wire
<em>also known as potential difference</em>
It is very similar to the movement of air, it moves from higher density to lower density. in this case, the change in density is the potential difference
So, since voltage is the difference between the charge available on the ends of a wire. Even if the wire splits in parallel circuit, the difference of the charges remains the same
<em>the more the potential difference, the faster electrons will move to the material with lower charge</em>
<u>Current:</u>
Current is the amount of electrons moving through a cross-section of a wire in a period of time
So basically, it is the amount of electrons that move across a given point on a wire in a period of time
If the wire splits, we will have the same amount of electrons moving through as they would if the wire was not split but now, the electrons passing are divided and hence, if we measure the current after the split, we will find that we have a lower current
that's because we have less charge moving through the cross-section of the wire since some of those electrons are moving through a different wire
That's why the current splits in a parallel circuit
Answer:
a.) L = 2.64 kgm^2/s
b.) V = 4.4 m/s
Explanation: Jessica stretches her arms out 0.60 m from the center of her body. This will be considered as radius.
So,
Radius r = 0.6 m
Mass M = 2 kg
Velocity V = 1.1 m/s
Angular momentum L can be expressed as;
L = MVr
Substitute all the parameters into the formula
L = 2 × 1.1 × 0.6 = 1.32kgm^2s^-1
the combined angular momentum of the masses will be 2 × 1.32 = 2.64 kgm^2s-1
b. If she pulls her arms into 0.15 m,
New radius = 0.15 m
Using the same formula again
L = 2( MVr)
2.64 = 2( 2 × V × 0.15 )
1.32 = 0.3 V
V = 1.32/0.3
V = 4.4 m/s
Her new linear speed will be 4.4 m/s
<span>In this problem, we need to solve for Bubba’s mass. To do this, we let A be the area of the raft and set the weight of the displaced fluid with the raft alone as ρwAd1g and ρwAd2g with the person on the raft, </span>where ρw is the density of water, d1 = 7cm, and d2= 8.4 cm. Set the weight of displaced fluid equal to the weight of the floating objects to eliminate A and ρw then solve for m.
<span>ρwAd1g = Mg</span>
ρw<span>Ad2g = (M + m) g</span>
<span>d2∕d1 = (M + m)/g</span>
m = [(d2<span>∕d1)-1] M = [(8.4 cm/7.0 cm) - 1] (600 kg) =120 kg</span>
This means that Bubba’s mass is 120 kg.
Answer:
a) m = 69.0 kg
b) release some gas in the opposite direction to the astronaut's movement
Explanation:
a) Let's use Newton's second law
F = m a
m = F / a
m = 60.0 / 0.870
m = 69.0 kg
b) when we exert a force on the astronaut it acquires a momentum po, as the astronaut system plus spacecraft is isolated, the momentum is conserved
p₀ = p_f
m v = M v '
v ’=
so we see that the ship is moving backwards, but since the mass of the ship is much greater than the mass of the astronaut, the speed of the ship is very small.
One method to avoid this effect is to release some gas in the opposite direction to the astronaut's movement so that the initial momentum of the astronaut plus the gas is zero and therefore no movement is created in the spacecraft.