Answer:
Option (B)
Explanation:
Light is a form of electro-magnetic waves. This light wave has distinct range of wavelength that allows it to form different colors of light. This means that the color of the light produces depending on the amount of wavelength it comprises.
The visible light ranges from Violet to Red, and this is observed as different colors when each of these electromagnetic waves strikes our eyes at a certain angle. The violet light has the shortest wavelength of about 410 nm, where the red light has the highest wavelength of about 650 nm.
Thus, the correct answer is option (B).
If we neglect frictional force, the total mechanical energy of the ball is conserved.
The total mechanical energy of the ball is the sum of its kinetic energy K and its potential energy U:

where the kinetic energy depends on the speed v of the ball:
while the potential energy depends on the height h at which the ball is:

As the ball travels along the roller coaster, there is a continuous conversion between kinetic and potential energy, because the total mechanical energy E has always the same value. Therefore, when the ball goes on top of a hill, its height h increases and its potential energy U increases as well, while the speed v decreases and K decreases. Vice-versa, when the ball reaches the bottom of a hill, its height h decreases and therefore the potential energy U decreases, while the speed v increases and therefore the kinetic energy K of the ball increases as well.
Answer:vapour gets stuckes into the carburetor when the car engine heat up with continuous acceleration and deceleration.
Explanation:Vapor lock occurs when the car engine gets heat up with continuous acceleration and deceleration. The automobile engine has to work harder during the hot summer days. An automobile engine runs hotter than usual in the stop-go traffic.. This extreme heat vaporizes the fuel in carburetor and fuel pump.
Thrust is a reaction force described quantitatively by Newton's third law. When a system expels or accelerates mass in one direction, the accelerated mass will cause a force of equal magnitude but opposite direction on that system. Mathematically can be written as,

Here,
v = speed of the exhaust gases measured relative to the rocket.
= Rate of change of mass with respect to time
Our values are given as,


Replacing we have that


Missing part in the text of the problem:
"<span>Water is exposed to infrared radiation of wavelength 3.0×10^−6 m"</span>
First we can calculate the amount of energy needed to raise the temperature of the water, which is given by

where
m=1.8 g is the mass of the water

is the specific heat capacity of the water

is the increase in temperature.
Substituting the data, we find

We know that each photon carries an energy of

where h is the Planck constant and f the frequency of the photon. Using the wavelength, we can find the photon frequency:

So, the energy of a single photon of this frequency is

and the number of photons needed is the total energy needed divided by the energy of a single photon: