In general terms, exothermic reactions release energy, so the energy goes from the system to the surroundings.
Answer:
The energy released in the decay process = 18.63 keV
Explanation:
To solve this question, we have to calculate the binding energy of each isotope and then take the difference.
The mass of Tritium = 3.016049 amu.
So,the binding energy of Tritium = 3.016049 *931.494 MeV
= 2809.43155 MeV.
The mass of Helium 3 = 3.016029 amu.
So, the binding energy of Helium 3 = 3.016029 * 931.494 MeV
= 2809.41292 MeV.
The difference between the binding energy of Tritium and the binding energy of Helium is: 32809.43155 - 2809.412 = 0.01863 MeV
1 MeV = 1000keV.
Thus, 0.01863 MeV = 0.01863*1000keV = 18.63 keV.
So, the energy released in the decay process = 18.63 keV.
The answer is: b)16,200 seconds :)
To solve this question you need to calculate the number of the gas molecule. The calculation would be:
PV=nRT
n=PV/RT
n= 1 atm * 40 L/ (0.082 L atm mol-1K-<span>1 * 298.15K)
</span>n= 1.636 moles
The volume at bottom of the lake would be:
PV=nRT
V= nRT/P
V= (1.636 mol * 277.15K* 0.082 L atm mol-1K-1 )/ 11 atm= <span>3.38 L</span>
a. t=0.553 s
b. vox(horizontal speed) = 3.62 m/s
<h3>Further explanation</h3>
Given
h = 1.5 m
x = 2 m
Required
a. time
b. vo=initial speed
Solution
Free fall motion
a. h = 1/2 gt²(vertical motion=h=voyt+1/2gt²⇒voy = 0)

t = √2h/g
t = √2.1.5/9.8
t=0.553 s
b. x=vox.t(horizontal motion)

vox=x/t
vox=2/0.553
vox=3.62 m/s