Answer: C.
Explanation: Alcohol floats on oil and water sinks in oil. Water, alcohol, and oil layer well because of their densities, but also because the oil layer does not dissolve in either liquid. The oil keeps the water and alcohol separated so that they do not dissolve in one another. ... Water sinks because it is more dense than oil.
Answer is: <span>ch3co2h; acetic acid.
</span><span>An Arrhenius acid is a
substance that dissociates in water to form hydrogen ions or protons.
</span>Acetic acid dissociate in aqueous solution to form hydrogen ions (H⁺) and acetic anion (CH₃COO⁻).
<span>Balanced chemical reaction (dissociation):
CH</span>₃COOH(aq) ⇄ CH₃COO⁻(aq) + H⁺(aq).
Answer: 
Explanation:

cM 0 0
So dissociation constant will be:

Given: c = 0.15 M
pH = 1.86
= ?
Putting in the values we get:
Also ![pH=-log[H^+]](https://tex.z-dn.net/?f=pH%3D-log%5BH%5E%2B%5D)
![1.86=-log[H^+]](https://tex.z-dn.net/?f=1.86%3D-log%5BH%5E%2B%5D)
![[H^+]=0.01](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D0.01)
![[H^+]=c\times \alpha](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3Dc%5Ctimes%20%5Calpha)


As ![[H^+]=[ClCH_2COO^-]=0.01](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D%5BClCH_2COO%5E-%5D%3D0.01)

![K_a=1.67\times 10^{-3]](https://tex.z-dn.net/?f=K_a%3D1.67%5Ctimes%2010%5E%7B-3%5D)
Thus the vale of
for the acid is 
Answer:
C option is the correct answer
A gauge records the pressure over atmospheric pressure (0kpa on the gauge is actually the atmospheric pressure and a reading of 276kpa is 276kpa over atmospheric pressure). That means that means that to find absolute pressure you just add atmospheric pressure (around 1atm (101kpa)) to 286kpa to get 387kpa. I hope this helps.