Answer:
Time = t = 6.62 s
Explanation:
Given data:
Height = h = 215 m
Initial velocity =
= 0 m/s
gravitational acceleration = g = 9.8 m/s²
Time = t = ?
According to second equation of motion

As initial velocity is zero, So the first term of right hand side of above equation equal to zero.

t² = 
t =
t = 
t = 6.62 s
The answer is c so the area can grow
Answer:
270 m/s²
Explanation:
Given:
α = 150 rad/s²
ω = 12.0 rad/s
r = 1.30 m
Find:
a
The acceleration will have two components: a radial component and a tangential component.
The tangential component is:
at = αr
at = (150 rad/s²)(1.30 m)
at = 195 m/s²
The radial component is:
ar = v² / r
ar = ω² r
ar = (12.0 rad/s)² (1.30 m)
ar = 187.2 m/s²
So the magnitude of the total acceleration is:
a² = at² + ar²
a² = (195 m/s²)² + (187.2 m/s²)²
a = 270 m/s²
Answer:
mu=12Tm^2
Explanation:
the magnetic moment mu of a single loop is given by:

where I is the current, B is the magnetic field and A is the area of the loop. By replacing we obtain:

hope this helps!!
Answer and explanation:
When you are changing a car tire, the most important thing is to keep the total diameter as equal as possible.
The total car tire diameter can be calculated as:

The profile of this tire is 75 (the higher/taller relation), therefore a 5 percent lower profile would be:
pr=0.95·75=71.25
The problem is that the profiles are normalized and the nearest profile available is 70.
If we take a theorical tire with a profile of 71.25:

The theorical tire size should be 205/71 R15.
If we look for a real tire size, we should look for a tire with a diameter nearest to 26.5'' and a profile of 70.
The best option for real tire size is: Tire 225/70 R14 (wheel diameter of 26.4'') or 205/70 R15 (wheel diameter of 26.3'').