A binomial nomenclature, more commonly referred to as a scientific name.
An element which is highly conductive, highly reactive, soft, and lustrous is most likely an alkali metal.
Alkali metals are in group 1 of the Periodic table which means that they have only a single valence electron.
This causes them to be soft and highly reactive because:
- The single valance electron leads to weak bonds amongst the element's atoms which makes them soft
- The elements want to lose the single valance electron so as to become stable so they will react with other elements to give away the electron.
Examples of alkali electrons include:
- Lithium
- Sodium
- Potassium etc
In conclusion therefore, alkali metals are highly reactive and soft and so the element described above is most likely an alkali metal.
<em>Find out more at brainly.com/question/18722874.</em>
Approximately 101 N air is in a column 1-cm2 in cross-section that extends from sea level to the top of the atmosphere
The basic level for determining height and depth on Earth is the sea level. The ocean's surface tends to seek the same level since it is one continuous body of water. However, the sea level is never fully level due to winds, currents, river discharges, and changes in gravity and temperature.
At the equator, the radius of the Earth at sea level is 6378.137 km (3963.191 mi). At the poles, it is 6,356.752 km (3,949.903 km), and on average, it is 6,371.001 km (3,958.756 mi). The elevation of the shoreline—the boundary between the ocean and the land—is referred to as sea level. Land that is higher than this altitude is above sea level, and land that is lower is below sea level.
To learn more about sea level please visit -
brainly.com/question/2113249
#SPJ4
Answer:
You pull on the oars. By the third law, the oars push back on your hands, but that’s irrelevant to the motion of the boat. The other end of each oar (the blade) pushes against the water. By the third law, the water pushes back on the oars, pushing the boat forward.
Answer:
The net displacement of the car is 3 km West
Explanation:
Please see the attached drawing to understand the car's trajectory: First in the East direction for 4 km (indicated by the green arrow that starts at the origin (zero), and stops at position 4 on the right (East).
Then from that position, it moves back towards the West going over its initial path, it goes through the origin and continues for 3 more km completing a moving to the West a total of 7 km. This is indicated in the drawing with an orange trace that end in position 3 to the left (West) of zero.
So, its NET displacement considered from the point of departure (origin at zero) to the final point where the trip ended, is 3 km to the west.