Answer:
The incidence rate is typically expressed as the number of cases per person-year of observation. Only new cases are considered when computing the incidence rate, while cases that were diagnosed earlier are excluded. The “population at risk” measure is usually obtained from census data.
Explanation:
The incidence rate is typically expressed as the number of cases per person-year of observation. Only new cases are considered when computing the incidence rate, while cases that were diagnosed earlier are excluded. The “population at risk” measure is usually obtained from census data.
Answer:
78.4 KN/m
Explanation:
Given
mass of person 'm' =80 kg
car dips about i.e spring stretched 'x'= 1 cm => 0.01m
acceleration due to gravity 'g'= 9.8 m/s^2
as we know that,in order to find approximate spring constant we use Hooke's Law i.e F=kx
where,
F = the force needed
x= distance the spring is stretched or compressed beyond its natural length
k= constant of proportionality called the spring constant.
F=kx
---> (since f=mg)
mg=kx
k=(mg)/x
k=(80 x 9.8)/ 0.01
k=78.4x
k=78.4 KN/m
Answer:
(a)2.7 m/s
(b) 5.52 m/s
Explanation:
The total of the system would be conserved as no external force is acting on it.
Initial momentum = final momentum
⇒(4.30 g × 943 m/s) + (730 g × 0) = (4.30 g × 484 m/s) + (730 g × v)
⇒ 730 ×v = (4054.9 - 2081.2) =1973.7
⇒v=2.7 m/s
Thus, the resulting speed of the block is 2.7 m/s.
(b) since, the momentum is conserved, the speed of the bullet-block center of mass would be constant.

Thus, the speed of the bullet-block center of mass is 5.52 m/s.