Sn is Tin which has 50 atomic number
it means it has 50 electrons in its outer shells
+2 shows its valency
plus sign comes when electrons are removed from an atom
so here 2 electrons are removed from Sn atom
remaining electrons are 50-2
48 electrons
Answer:
a) 24
b) 3.3 sec
c) 29.8 m/s
d) 48.85 m
Explanation:
a)
α = angular acceleration = - 28.4 rad/s²
r = radius of the tire = 0.32 m
w₀ = initial angular velocity = 93 rad/s
w = final angular velocity = 0 rad/s
θ = angular displacement
Using the equation
w² = w₀² + 2αθ
0² = 93² + 2 (- 28.4) θ
θ = 152.3 rad
n = number of revolutions
Number of revolutions are given as
b)
t = time taken to stop
using the equation
w = w₀ + αt
0 = 93 + (- 28.4) t
t = 3.3 sec
c)
v₀ = initial velocity of the car
initial velocity of the car is given as
v₀ = r w₀ = (0.32) (93) = 29.8 m/s
d)
v = final velocity = 0 m/s
a = linear acceleration = rα = (0.32) (- 28.4) = - 9.09 m/s²
d = distance traveled by car before stopping
Using the equation
v² = v₀² + 2 a d
0² = 29.8² + 2 (- 9.09) d
d = 48.85 m
60.3° from due south and 5.89 m/s For this problem, first calculate a translation that will put John's destination directly on the origin and apply that translation to Mary's destination. Then the vector from the origin to Mary's new destination will be the relative vector of Mary as compared to John. So John is traveling due south at 6.7 m/s. After 1 second, he will be at coordinates (0,-6.7). The translation will be (0,6.7) Mary is traveling 28° West of due south. So her location after 1 second will be (-sin(28)*10.9, -cos(28)*10.9) = (-5.117240034, -9.624128762) After translating that coordinate up by 6.7, you get (-5.117240034, -2.924128762) The tangent of the angle will be 2.924128762/5.117240034 = 0.57142693 The arc tangent is atan(0.57142693) = 29.74481039° Subtract that value from 90 since you want the complement of the angle which is now 60.25518961° So Mary is traveling 60.3° relative to due south as seen from John's point of view. The magnitude of her relative speed is sqrt(-5.117240034^2 + -2.924128762^2) = 5.893783 m/s Rounding the results to 3 significant digits results in 60.3° and 5.89 m/s
Answer:
56 kg
Explanation:
The change in potential energy of the man is given by:

where
m is the man's mass
g is the gravitational acceleration
is the change in height of the man
In this problem, we have:
is the gain in potential energy
g = 9.8 m/s^2 is the gravitational acceleration
is the change in height
Re-arranging the equation and substituting the numbers, we find the mass:

Power = work /time
and W = force * dis
W = 96 * 3.046 J = 292.44 J
P = 292.44 / 4.6 = 63.575 watt