The MCB of a rupas room is tripped and keeps on tripping again and again, and if it is a domestic circuit, what could be the reason for this phenomenon?
The reason could be a short circuit which is resulting in higher level of currents to pass through the MCB which is resulting in trip every time.
OR
The MCB is faulty and might need a replacement.
To Diagnose the problem further more.
Turn off all the switches in rupas room and then try turning on the MCB. If it trips again then MCB is faulty (Subjective to the fact there everything was normal before this issue and no signs of short circuit or spark in wiring were observed)
If MCB does not trip in point 1 then Turn ON all the switches one by one. This shall give you the cause of problem.
Christian made 1000 pancakes.
Explanation:
Let us represent the total amount of Pancake made by Christian as = K
From the problem;
Christian ate
of the pancake in the morning =
* K =
K
We know that Christian cannot eat her pancake and at the same time have it, the remaining pancake will then be:
total amount of cake - fraction eaten
Remainder = K -
K=
K
In the afternoon, we know that she ate 1/4 of the remaining cake:
K*
K =
K
The remaining cake in the afternoon will be:
Total amount of cake remaining from morning - amount eaten in the afternoon
=
K -
K
=
K
The fraction of the cake remaining in the afternoon is
K
Since she had 300cakes left in the afternoon, then :
K= 300
K = 1000 pancakes
Therefore Christian made 1000 pancakes.
learn more:
Fractions brainly.com/question/1648978
#learnwithBrainly
Answer:
<h3>The answer is 500 km </h3>
Explanation:
The distance covered by an object given it's velocity and time taken can be found by using the formula
<h3>distance = average velocity × time</h3>
From the question
average speed = 250 km/h
time = 2 hrs
We have
distance = 250 × 2
We have the final answer as
<h3>500 km</h3>
Hope this helps you
Answer:
Light waves carry energy parallel to the motion of the wave, while sound waves carry energy perpendicular to it. Sound waves carry energy parallel to the motion of the wave, while light waves carry energy perpendicular to it.
Explanation: