Im going for d i think i took this last year
So let's convert this amount of mL to grams:

Then we need to convert to moles using the molar weight found on the periodic table for mercury (Hg):

Then we need to convert moles to atoms using Avogadro's number:
![\frac{6.022*10^{23}atoms}{1mole} *[8.135*10^{-2}mol]=4.90*10^{22}atoms](https://tex.z-dn.net/?f=%20%5Cfrac%7B6.022%2A10%5E%7B23%7Datoms%7D%7B1mole%7D%20%2A%5B8.135%2A10%5E%7B-2%7Dmol%5D%3D4.90%2A10%5E%7B22%7Datoms%20)
So now we know that in 1.2 mL of liquid mercury, there are
present.
Answer:
The products of self-ionization of water are OH⁻ and H⁺.
Explanation:
- The water is self ionized according to the equation:
<em>H₂O → OH⁻ + H⁺.
</em>
<em></em>
The ionic product for water (Kw) = [OH⁻][H⁺] = 10⁻¹⁴.
Kw is also called "self-ionization constant" or "auto-ionization constant".
A chemical formula shows the kinds and numbers of <u>atoms</u> in the smallest representative unit of a substance.
<u>Explanation:</u>
In chemistry, a formula unit is the empirical formula of "ionic or covalent network solid compound" that is used as an independent entity for "stoichiometric calculations". This formula is a representation of a molecule that uses chemical symbols.
The unit is the lowest whole number ratio of ions represented in an ionic compound. It gives the numbers of atoms representing the "smallest representative" unit of a substance. The number of atoms also tells us about the chemical and physical properties of the compound formed.