Answer:
50 mol
Explanation:
Mass of methane = 800 g
Number of moles of CO₂ produced = ?
Solution:
Chemical equation:
CH₄ + 2O₂ → CO₂ + 2H₂O
Number of moles of methane:
Number of moles = mass/molar mass
Number of moles = 800 g/ 16 g/mol
Number of moles = 50 mol
Now we will compare the moles of methane and carbon dioxide from balanced chemical equation.
CH₄ : CO₂
1 : 1
50 : 50
Answer:
Disagree
Explanation:
Biodiversity is having a variety, or a diversity of life. Having one crop is not a variety, therefore this field does not have high biodiversity.
For the absorbance of the solution in a 1.00 cm cell at 500 nm is mathematically given as
A’ = 0.16138
<h3>What is the absorbance of the solution in a 1.00 cm cell at 500 nm?</h3>
Absorbance (A) 2 – log (%T) = 2 – log (15.6) = 0.8069
Generally, the equation for the Beer’s law is mathematically given as
A = ε*c*l
0.8069 = ε*c*(5.00 )
ε*c = 0.16138 cm-1
then for when ε*c is constant
l’ = 1.00
A’ = (0.16138 cm-1)*(1.00 cm)
A’ = 0.16138
In conclusion, the absorbance of the solution in a 1.00 cm cell at 500 nm is
A’ = 0.16138
Read more about Wavelength
brainly.com/question/3004869
Answer:This would be heterozygous, so both dominant and recessive alleles are written.
Explanation:Heterozygous means that the dominant and recessive alleles are written genotypically.
Answer:
The two would end up repelling each other very strongly and more energy would ultimately be required to keep the metal-ligand system in place
Explanation:
A complex is made up a central metal atom or ion and ligands. Ligands are lewis bases and they possess lone pairs of electrons. A complex is formed when electrons are donated from ligand species to metals.
However, if the ligand has a negative charge at a particular location and we try to put electrons from the metal near the electrons from the ligand, the two would end up repelling each other very strongly and more energy would ultimately be required to keep the metal-ligand system in place.