Explanation:
The rate of consumption of electric energy in an electric appliance is called electric power. Hence, the rate at which energy is delivered by a current is the power of the appliance.
I believe the correct gravity on the moon is 1/6 of Earth.
Take note there is a difference between 1 6 and 1/6.
HOWEVER, we should realize that the trick here is that the
question asks about the MASS of the astronaut and not his weight. Mass is an
inherent property of an object, it is unaffected by external factors such as
gravity. What will change as the astronaut moves from Earth to the moon is his
weight, which has the formula: weight = mass times gravity.
<span>Therefore if he has a mass of 50 kg on Earth, then he will
also have a mass of 50 kg on moon.</span>
The force of gravity on objects is proportional to the mass of each object.
(That's a big part of the reason why, when you eat more and your mass
increases, you weigh more.)
The forces of gravity between the Earth and the 6kg ball are 50% greater
than the forces of gravity between the Earth and the 4kg ball.
(The gravitational forces between the 4kg ball and the 6kg ball, or between
both bowling balls and you, are so small that they may be ignored.)
5.77 × Hz is the green photon's frequency .
The distance between similar points (adjacent crests) in adjacent cycles of a waveform signal that is propagated in space is known as the wavelength. A wave's wavelength is often measured in meters (m), centimeters (cm), or millimeters (mm) (mm). The relationship between frequency and wavelength is inverse.
<h3>Given:</h3>
Wavelength of green light = 520 nm
f = c / λ
where, f = Frequency
c = Speed of light = 3 × m/s
λ = Wavelength of light
∴ f = c / λ
f =
= 5.77 × Hz
Therefore, 5.77 × Hz is the green photon's frequency .
Learn more about wavelength here:
brainly.com/question/10728818
#SPJ1
5.7 kilometers is equal to 3.5418157957528034 miles