Answer:
<em>The end of the ramp is 38.416 m high</em>
Explanation:
<u>Horizontal Motion
</u>
When an object is thrown horizontally with an initial speed v and from a height h, it follows a curved path ruled by gravity.
The maximum horizontal distance traveled by the object can be calculated as follows:

If the maximum horizontal distance is known, we can solve the above equation for h:

The skier initiates the horizontal motion at v=25 m/s and lands at a distance d=70 m from the base of the ramp. The height is now calculated:


h= 38.416 m
The end of the ramp is 38.416 m high
Answer:
h₍₁₎ = 495,1 meters
h₍₂₎ = 480,4 m
h₍₃₎ = 455,9 m
...
..
Explanation:
The exercise is "free fall". t = 
Solving with this formula you find the time it takes for the stone to reach the ground (T) = 102,04 s
The heights (h) according to his time (t) are found according to the formula:
h(t) = 500 - 1/2 * g * t²
Remplacing "t" with the desired time.
Answer:

Explanation:
We are given that
Surface area of membrane=
Thickness of membrane=
Assume that membrane behave like a parallel plate capacitor.
Dielectric constant=5.9
Potential difference between surfaces=85.9 mV
We have to find the charge resides on the outer surface of membrane.
Capacitance between parallel plate capacitor is given by

Substitute the values then we get
Capacitance between parallel plate capacitor=

V=


Hence, the charge resides on the outer surface=
Answer:
2,800 n
Explanation:
hope this helps, have a nice day/night! :D
Answer:
44.6 N
Explanation:
Draw a free body diagram of the block. There are four forces on the block:
Weight force mg pulling down,
Normal force N pushing up,
Friction force Nμ pushing left,
and applied force F pulling right 30° above horizontal.
Sum of forces in the y direction:
∑F = ma
N + F sin 30° − mg = 0
N = mg − F sin 30°
Sum of forces in the x direction:
∑F = ma
F cos 30° − Nμ = 0
F cos 30° = Nμ
N = F cos 30° / μ
Substitute:
mg − F sin 30° = F cos 30° / μ
mg = F sin 30° + (F cos 30° / μ)
Plug in values:
mg = 20 N sin 30° + (20 N cos 30° / 0.5)
mg = 44.6 N