Answer:
L = 1.15 m
Explanation:
The diffraction phenomenon is described by the equation
a sin θ = m λ
Where a is the width of the slit, λ the wavelength and m is an integer, the order of diffraction is left.
The diffraction measurements are made on a screen that is far from the slit, and the angles in the experiment are very small, let's use trigonometry
tan θ = y / L
tan θ = sint θ / cos θ≈ sin θ
We substitute in the first equation
a (y / L) = m λ
The first maximum occurs for m = 1
The distance is measured from the center point of maximum, which coincides with the center of the slit, in this case the distance is the total width of the central maximum, so the distance (y) measured from the center is
y = 1.15 / 2 = 0.575 cm
y = 0.575 10⁻² m
Let's clear the distance to the screen (L)
L = a y / λ
Let's calculate
L = 115 10⁻⁶ 0.575 10⁻² / 575 10⁻⁹
L = 1.15 m
A) 
The energy of an x-ray photon used for single dental x-rays is

The energy of a photon is related to its wavelength by the equation

where
is the Planck constant
is the speed of light
is the wavelength
Re-arranging the equation for the wavelength, we find

B) 
The energy of an x-ray photon used in microtomography is 2.5 times greater than the energy of the photon used in part A), so its energy is

And so, by using the same formula we used in part A), we can calculate the corresponding wavelength:

The transfer of energy is potential energy to kinetic energy. The swing has potential energy when she pulls it back and once she lets go, allowing the swing to move, it then has kinetic energy.
1. D:Asteroids have geological activity
2.A:Short-period comets circle around the sun in 200 years or less and originate in the Kuiper Belt
3.D:All of the above
4.A:It’s gravity is too weak to clear it’s orbit
5.B:Ceres
6.C:Haumea
7.A:Is bigger than Pluto
I hope this helps
Answer:
For the car to move with constant velocity the additional force required is 
Explanation:
From the question we are told that
The net force of the car is 
Generally the total force acting on the car is the net force plus the force due to gravity acting in direction of the car (Let denote it as
)
So the total force acting on the car is mathematically represented as

Here this F representing the total force can be mathematically represented as

Now for constant velocity to be attained, the acceleration of the car will be zero
So at constant velocity

=> 
So

=> 
=> 