Answer:
a)
s
b) 3.41 mm
Explanation:
a)
We take the speed of light, c =
m/s and the refractive index of glass as 1.517.
Speed = distance/time
Time = distance/speed
Refractive index, n = speed of light in vacuum / speed of light in medium






b)
We take the refractive index of water as 1.333.
Speed in water = speed in vacuum / refractive index of water
Distance = speed * time



d = 3.41 mm
Solid to liquid
Liquid to solid
By adding or removing heat energy aka thermal energy
Answer:
![[\psi]= [Length^{-3/2}]](https://tex.z-dn.net/?f=%5B%5Cpsi%5D%3D%20%5BLength%5E%7B-3%2F2%7D%5D)
- This means that the integral of the square modulus over the space is dimensionless.
Explanation:
We know that the square modulus of the wavefunction integrated over a volume gives us the probability of finding the particle in that volume. So the result of the integral

must be dimensionless, as represents a probability.
As the differentials has units of length
for the integral to be dimensionless, the units of the square modulus of the wavefunction has to be:
![[\psi]^2 = [Length^{-3}]](https://tex.z-dn.net/?f=%5B%5Cpsi%5D%5E2%20%3D%20%5BLength%5E%7B-3%7D%5D)
taking the square root this gives us :
![[\psi] = [Length^{-3/2}]](https://tex.z-dn.net/?f=%5B%5Cpsi%5D%20%3D%20%5BLength%5E%7B-3%2F2%7D%5D)
Answer:
10581.59 V
Explanation:
We are given that
Magnetic field=B=0.65 T
Speed of electron=
Charge on electron, 
Mass of electron,
We have to find the potential difference in volts required in the first part of the experiment to accelerate electrons.

Where V=Potential difference
Mass of electron
v=Velocity of electron
Using the formula


Hence, the potential difference=10581.59 V