Qualitative data gives the information of quality which can not be measured in numbers. For example: Color of eyes, softness of skin.
Quantitative data is information of quantity that can be represented in numbers. For example length and mass of any object.
Zinc is a silver-gray metal is a qualitative data, here silver gray color is quality of zinc metal which can not be measured in numbers.
Chlorine has a density of 3.2 g/L is a quantitative data. The value of density can be compared with other elements by comparing the numbers.
Gallium is not found in nature is neither qualitative nor quantitative.
Nitrogen has a melting point of –210.00 °C is a quantitative data because this is expressed in numbers.
Aluminum is a solid is a qualitative data because it tells about the state of element which can not be measured in numbers.
An atom would be your answer, so B!
42.6 is the answer I believe because you would do 2,560 divided by 60 if I'm correct.
I'm going to assume that this gripping drama takes place on planet Earth, where the acceleration of gravity is 9.8 m/s². The solutions would be completely different if the same scenario were to play out in other places.
A ball is thrown upward with a speed of 40 m/s. Gravity decreases its upward speed (increases its downward speed) by 9.8 m/s every second.
So, the ball reaches its highest point after (40 m/s)/(9.8 m/s²) = <em>4.08 seconds</em>. At that point, it runs out of upward gas, and begins falling.
Just like so many other aspects of life, the downward fall is an exact "mirror image" of the upward trip. After another 4.08 seconds, the ball has returned to the height of the hand which flung it. In total, the ball is in the air for <em>8.16 seconds</em> up and down.