Answer:
D
Explanation:
From the information given:
The angular speed for the block
Disk radius (r) = 0.2 m
The block Initial velocity is:
Change in the block's angular speed is:
However, on the disk, moment of inertIa is:
The time t = 10s
∴
Frictional torques by the wall on the disk is:
Finally, the frictional force is calculated as:
<h2>
Answer:442758.96N</h2>
Explanation:
This problem is solved using Bernoulli's equation.
Let be the pressure at a point.
Let be the density fluid at a point.
Let be the velocity of fluid at a point.
Bernoulli's equation states that for all points.
Lets apply the equation of a point just above the wing and to point just below the wing.
Let be the pressure of a point just above the wing.
Let be the pressure of a point just below the wing.
Since the aeroplane wing is flat,the heights of both the points are same.
So,
Force is given by the product of pressure difference and area.
Given that area is .
So,lifting force is
A)Ep'=mgh=mgl(1-cosa).At the bottom of the swing Ep=0(reference level),so the potential energy as the child is just released is bigger than the potential energy at the bottom of the swing.;B)The speed of the child at the bottom of the swing-->v=√(2gh)=√[2gl(1-cosa)];C)I don't think that the tension does any work.
Answer:
force is decreased by a factor of 4.
Explanation:
According to the Newton's law of gravitation, the force of gravitation between the two object is inversely proportional to the square of distance between them. Now the distance is doubled, so the force between the two objects becomes one forth.
Force is decreased by a factor or 4.
Answer:
1. 38,500
2. 308,000
Explanation:
This would require a calculator. To find momentum, you multiply mass and velocity. You always want your mass to be measure in kilograms, but that is irrelevant in this question because they already are, it is just something to remember.