10HSiCl3 + 15H2O = H10Si10O15 + 30HCl
Answer:
im not sure but I hope this helps
Explanation:
I believe the equivalents is just the moles reactant/moles limiting reactant
water has a denisty of 1 g/mL. 1 L is 1000 ml so there are 1000g/L.
the molar mass of water is 18g/mol if you use the Liters in the equation above you can find the number of grams present. divide this number you found by 18 to find the moles.
now take the amount of the other reactant given and divide it by its own molar mass. this will give you the number of moles of that reactant.
divide the moles of water by the moles of the reactant and that is the equivalent.
to find the normality you take this number and divide it by the number of liters.
Answer is: [COCl₂] > [CO][Cl₂]
Chemical reaction: COCl₂(g) ⇄ CO(g) + Cl₂(g); Keq = 8.1 x 10⁻⁴.
Keq = [CO] · [Cl₂] / [COCl₂]; equilibrrium constant of chemical reaction.
[CO] · [Cl₂] / [COCl₂] = 0,00081.
Equilibrium product concentration is much more less than equilibrium concentration of reactant.
Answer:
The system gains 126100 J
Explanation:
The heat can be calculated by the equation:
Q = nxCxΔT, where Q is the heat, C is the heat capacity,n is the number of moles and ΔT is the variation of temperature (final - initial). The number of moles is the mass divided by the molar mass, so:
n = 250/4 = 62.5 mol.
The system must be in thermal equilibrium with the surroundings, so if the temperature of the surroundings decreased 97 K, the temperature of the system increased by 97 K, so ΔT = 97 K
Q = 62.5x20.8x97
Q = 126100 J