Answer:
The Current Iₜ = I₁ + I₂ + I₃
Charge Qₜ = Q₁ + Q₂ + Q₃
Potential difference Vₜ = V₁ = V₂ = V₃
The total capacitance Cₜ = C₁ + C₂ + C₃
Explanation:
According to the attached image;
For parallel arrangements of capacitors, the current flowing through each of the capacitors sums up to the total current flowing through the circuit;
Iₜ = I₁ + I₂ + I₃
Also the charge storage by each capacitor sums up to give the total charge stored;
Qₜ = Q₁ + Q₂ + Q₃
The potential difference across each of the capacitors are the same and equal to the total voltage across the circuit;
Vₜ = V₁ = V₂ = V₃
The total capacitance equals the sum of the capacitances of each of the capacitors;
Cₜ = C₁ + C₂ + C₃
We know that: 1 L = 100 cL. Or 1 cL = 0.01 L. Then we will make the conversion: 34.9 cL = 34.9 / 100 L = 0.349 L. Also: 1 hL = 100 L. 0.349 L = 0.349 / 100 hL = 0.00349 hL. This can be also written as: 3.49 * 10^(-3) hL ( in the scientific notation ). Answer: 3.49 cL = 0.00349 <span>hL </span>
Answer:
False
Explanation:
The formula of force that exists between two charges is expressed as;
F = kq1q2/r²
If two charges separated by one meter exert a 9 N force on each other, the;
9 = kq1q2/1²
9 = kq1q2 ..... 1
If the charges are pushed to a 3 meter separation, then;
F = kq1q2/3²
F = kq1q2/9 .... 2
Divide both equations;
9/F = (kq1q2)/ kq1q2/9
9/F = kq1q2 * 9/ kq1q2
9/F = 9
F = 9/9
F = 1N
Hence if the charges are pushed to a 3 meter separation, then the force on EACH charge will be 1N. Hence the answer is False
It’s 4 because a coiled springs is closely spaced then widen