Answer:
P = F/S = 100/2 =50 (N/m2)
Answer:
Mass of car = 1098 kg
Explanation:
Here law of conservation of momentum is applied.
Let mass of car be m.
Initial momentum = Final momentum.
Initial momentum = 4350 x 7.39 + m x 0 = 32416.5 kgm/s
Final momentum = 4350 x 4.55 + m x 11.5 = 19792.5+11.5m
We have
19792.5+11.5m = 32416.5
m = 1097.97 kg
Mass of car = 1098 kg
Answer:
V = 11.83 m/s
Explanation:
Given the following data;
Mass = 2000 kg
Force = 10000N
Distance = 14 m
To find the final velocity of the car;
First of all, we would determine the acceleration of the car;
Acceleration = force/mass
Acceleration = 10000/2000
Acceleration = 5 m/s²
Next, we would use the third equation of motion to find the final velocity;
Where;
V represents the final velocity measured in meter per seconds.
U represents the initial velocity measured in meter per seconds.
a represents acceleration measured in meters per seconds square.
S represents the displacement measured in meters.
Substituting into the equation, we have;
V² = 0² + 2*5*14
V² = 0 + 140
V = √140
V = 11.83 m/s
Answer:

Explanation:
The speed of light in these mediums shall be lower than that in vacuum thus the total time light needs to cross both the media are calculated as under
Total time = Time taken through ice + Time taken through quartz
Time taken through ice = Thickness of ice / (speed of light in ice)


Thus in the same time the it would had covered a distance of
![Distance_{vaccum}=Totaltime\times V_{vaccum}\\\\Distance_{vaccum}=10^{-2}[2.20\mu _{ice+1.50\mu _{quartz}}]](https://tex.z-dn.net/?f=Distance_%7Bvaccum%7D%3DTotaltime%5Ctimes%20V_%7Bvaccum%7D%5C%5C%5C%5CDistance_%7Bvaccum%7D%3D10%5E%7B-2%7D%5B2.20%5Cmu%20_%7Bice%2B1.50%5Cmu%20_%7Bquartz%7D%7D%5D)
we have

Applying values we have
![Distance_{vaccum}=10^{-2}[2.20\times 1.309+1.50\times 1.542]](https://tex.z-dn.net/?f=Distance_%7Bvaccum%7D%3D10%5E%7B-2%7D%5B2.20%5Ctimes%201.309%2B1.50%5Ctimes%201.542%5D)

For the front glass of the car to get wet,
.
The given parameters:
- <em>Speed of the car, = Vc</em>
- <em>Speed of the rain, = 10 m/s</em>
The relative velocity of the car with respect to the falling rain is calculated as;

- If the speed of the car equals the speed of the rain, the rain will fall behind the car.
- If the speed of the rain is greater than speed of the car, the rain will fall far in front of the car.
- If the speed of the car is greater than speed of the rain, the rain will fall on the car.
Thus, for the front glass of the car to get wet,
.
Learn more about relative velocity here: brainly.com/question/17228388