1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kay [80]
3 years ago
9

What is the wavelength associated with an electron with a velocity of 4.8X10s m/s? (Mass of the electron is 9.1X10-31kg)?

Physics
1 answer:
amid [387]3 years ago
4 0

Answer:

1.52 nm

Explanation:

Using the De Broglie wavelength equation,

λ = h/p where λ = wavelength associated with electron, h = Planck's constant = 6.63 × 10⁻³⁴ Js and p = momentum of electron = mv where m = mass of electron = 9.1 × 10⁻³¹ kg and v = velocity of electron = 4.8 × 10⁵ m/s

So, λ = h/p

λ = h/mv

substituting the values of the variables into the equation, we have

λ = h/mv

λ = 6.63 × 10⁻³⁴ Js/(9.1 × 10⁻³¹ kg × 4.8 × 10⁵ m/s)

λ = 6.63 × 10⁻³⁴ Js/(43.68 × 10⁻²⁶ kgm/s)

λ = 0.1518 × 10⁻⁸ m

λ = 1.518 × 10⁻⁹ m

λ = 1.518 nm

λ ≅ 1.52 nm

You might be interested in
A 49.5-turn circular coil of radius 5.10 cm can be oriented in any direction in a uniform magnetic field having a magnitude of 0
ipn [44]

Answer:

The magnitude of the maximum possible torque exerted on the coil is 5.73 x 10⁻³ Nm

Explanation:

Given;

number of turns of the circular coil, N = 49.5 turns

radius of the coil, r = 5.10 cm = 0.051 m

magnitude of the magnetic field, B = 0.535 T

current in the coil, I = 26.5 mA = 0.0265 A

The magnitude of the maximum possible torque exerted on the coil is calculated as;

τ = NIAB

where;

A is the area of the coil

A = πr² = π(0.051)² = 0.00817 m²

Substitute the given values and solve for the maximum torque

τ = (49.5) x (0.0265) x (0.00817) x (0.535)

τ = 0.00573 Nm

τ = 5.73 x 10⁻³ Nm

3 0
3 years ago
How do lone pairs of electrons affect the bond angle differently than electrons shared in a bond?
lubasha [3.4K]

Answer:

Lone pairs cause bond angles to deviate away from the ideal bond angles

Explanation:

Bonded electrons are stabilized and clustered between the bonding electrons meaning they are much closer together. Non-bonding electrons however are not being shared between any atoms which allows them to roam a little further spreading the charge density over a larger space and therefore interfering with what would be an expected bond angle

3 0
3 years ago
In a chemical equation, where do the products appear
tester [92]

Answer:

products would appear after the raw materials

Explanation:

raw material + raw material = product (anything deriving from combining two materials)

4 0
3 years ago
A stretched rubber band is an example of which type potential energy
Alenkinab [10]

Answer: elastic potential energy

Explanation:

6 0
2 years ago
Read 2 more answers
To understand how to find the velocities of objects after a collision.
trasher [3.6K]

There are some information missing on Part D: Let the mass of object 1 be m and the mass of object 2 be 3m. If the collision is perfectly inelastic, what are the velocities of the two objects after the collision? Give the velocity v_1 of object one, followed by object v_2 of object two, separated by a comma. Express each velocity in terms of v.

Answer: Part A: v_1 = 0; v_2 = v

Part B: v_1 = v_2 = \frac{v}{2}

Part C: v_1 = \frac{v}{3}; v_2 = \frac{4v}{3}

Part D: v_1 = v_2 = \frac{v}{4}

Explanation: In elastic collisions, there no loss of kinetic energy and momentum is conserved. Momentum is determined as p = m.v and kinetic energy as K = \frac{1}{2}m.v^{2}

Conserved means that the amount of initial momentum is equal to the amount of final momentum:

m_{1}.v_{1i} + m_{2}.v_{2i} = m_{1}.v_{1f} + m_{2}.v_{2f}

No loss of energy means that initial kinietc energy is the same as the final kinetic energy:

\frac{1}{2}(m_{1}.v_{1i} + m_{2}.v_{2i}) = \frac{1}{2} (m_{1}.v_{1f} + m_{2}.v_{2f}  )

To determine the final velocities of each object, there are 2 variables and two equations, so working those equations, the result is:

v_{2f} = \frac{2.m_{1} } {m_{1} + m_{2} }.v_{1i}  + \frac{(m_{2} - m_{1})}{m_{1} + m_{2} } . v_{2i}

v_{1f} = \frac{m_{2} - m_{1} }{m_{1} + m_{2} } . v_{1i} + \frac{2.m_{2} }{m_{1} + m_{2} } .v_{2i}

For all the collisions, object 2 is static, i.e. v_{2i} = 0

<u>Part A</u>: Both objects have the same mass (m), v_{1i} = v and collision is elastic:

v_1 = \frac{m_{2} - m_{1}}{m_{1} + m_{2} } . v_{1i}

v_1 = 0

v_2 = \frac{2.m_{1} }{m_{1} + m_{2}}.v_{1i}

v_2 = \frac{2.m}{m+m}.v

v_2 = v

When the masses are the same and there is an object at rest, the object in movement stops and the object at rest has the same same velocity as the object who hit it.

<u>Part B</u>: Same mass but collision is inelastic: An inelastic collision means that after it happens, the two objects has the same final velocity, then:

m_{1}.v_{1i} + m_{2}.v_{2i} = m_{1}.v_{1f} + m_{2}.v_{2f}

m_{1}.v_{1i} = (m_{1}+m_{2}).v_{f}

v_{f} =  \frac{m_{1}.v_{1i}}{m_{1} + m_{2} }

v_1 = v_2 = \frac{m.v}{m+m}

v_1 = v_2 = \frac{v}{2}

<u>Part C:</u> Object 1 is 2m, object 2 is m and elastic collision:

v_1 = \frac{m_{2} - m_{1}}{m_{1} + m_{2} } . v_{1i}

v_1 = \frac{2m - m}{2m + m } . v

v_1 = \frac{v}{3}

v_2 = \frac{2.m_{1} }{m_{1} + m_{2}}.v_{1i}

v_2 = \frac{2.2m}{2m+m}.v

v_2 = \frac{4v}{3}

<u>Part D</u>: Object 1 is m, object is 3m and collision is inelastic:

v_1 = v_2 = v_{f} =  \frac{m_{1}.v_{1i}}{m_{1} + m_{2} }

v_1 = v_2 = \frac{m}{m+3m}.v

v_1 = v_2 = \frac{v}{4}

5 0
3 years ago
Other questions:
  • Which of the following terms refers to any push or pull on an object
    15·1 answer
  • A narrow beam of light containing red (660 nm) and blue (470 nm) wavelengths travels from air through a 2.60 cm thick flat piece
    13·1 answer
  • Their are fewer or more elements than compounds?
    12·2 answers
  • Which would have a longer vector arrow?
    14·1 answer
  • what is the answer to the question "Two boys of equal mass go up to the first floor of a building. Boy A takes the stairs, boy B
    10·1 answer
  • when an ambulance drives by your house with sirens blaring, the sound waves of the sirens are (space) as it approaches and (spac
    12·1 answer
  • This planet orbit around the sun cuts across the path of another planet.
    10·1 answer
  • Which is a TRUE statement about a series circuit
    8·1 answer
  • Which of the following is an example of improving communication skills?
    10·2 answers
  • There is a square loop of wire with side length L moving to the right at a speed of v. The resistance in the wire is R. To the r
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!