The epicenter was located somewhere on a circle centered at Recording station X, with a radius of 250 km.<span>
</span>
Answer:
Explanation:
a) In an exothermic reaction, the energy transferred to the surroundings from forming new bonds is ___more____ than the energy needed to break existing bonds.
b) In an endothermic reaction, the energy transferred to the surroundings from forming new bonds is ___less____ than the energy needed to break existing bonds.
c) The energy change of an exothermic reaction has a _____negative_______ sign.
d) The energy change of an endothermic reaction has a ____positive________ sign.
The energy changes occur during the bonds formation and bonds breaking.
There are two types of reaction endothermic and exothermic reaction.
Endothermic reactions:
The type of reactions in which energy is absorbed are called endothermic reactions.
In this type of reaction energy needed to break the bond are higher than the energy released during bond formation.
For example:
C + H₂O → CO + H₂
ΔH = +131 kj/mol
it can be written as,
C + H₂O + 131 kj/mol → CO + H₂
Exothermic reaction:
The type of reactions in which energy is released are called exothermic reactions.
In this type of reaction energy needed to break the bonds are less than the energy released during the bond formation.
For example:
Chemical equation:
C + O₂ → CO₂
ΔH = -393 Kj/mol
it can be written as,
C + O₂ → CO₂ + 393 Kj/mol
Answer:
27 liters of hydrogen gas will be formed
Explanation:
Step 1: Data given
Number of moles C = 1.03 moles
Pressure H2 = 1.0 atm
Temperature = 319 K
Step 2: The balanced equation
C +H20 → CO + H2
Step 3: Calculate moles H2
For 1 mol C we need 1 mol H2O to produce 1 mol CO an 1 mol H2
For 1.03 moles C we'll have 1.03 moles H2
Step 4: Calculate volume H2
p*V = n*R*T
⇒with p = the pressure of the H2 gas = 1.0 atm
⇒with V = the volume of H2 gas = TO BE DETERMINED
⇒with n = the number of moles H2 gas = 1.03 moles
⇒with R = the gas constant = 0.08206 L*Atm/mol*K
⇒with T = the temperature = 319 K
V = (n*R*T)/p
V = (1.03 * 0.08206 *319) / 1
V = 27 L
27 liters of hydrogen gas will be formed
Element Atomic Number Valency
Valency of Hydrogen 1 1
Valency of Helium 2 0
Valency of Lithium 3 1
Valency of Beryllium 4 2
Valency of Boron 5 3
Valency of Carbon 6 4
Valency of Nitrogen 7 3
Valency of Oxygen 8 2
Valency of Fluorine 9 1
Valency of Neon 10 0
Valency of Sodium (Na) 11 1
Valency of Magnesium (Mg) 12 2
Valency of Aluminium 13 3
Valency of Silicon 14 4
Valency of Phosphorus 15 3
Valency of Sulphur 16 2
Valency of Chlorine 17 1
Valency of Argon 18 0
Valency of Potassium (K) 19 1
Valency of Calcium 20 2
Valency of Scandium 21 3
Valency of Titanium 22 4
Valency of Vanadium 23 5,4
Valency of Chromium 24 2
Valency of Manganese 25 7, 4, 2
Valency of Iron (Fe) 26 2, 3
Valency of Cobalt 27 3, 2
Valency of Nickel 28 2
Valency of Copper (Cu) 29 2, 1
Valency of Zinc 30 2