-70°C
Sink
little
hydrogen bonding
Explanation:
Completing the statements:
Water's boiling point would have been close to -70°C. Ice would sink in water. Water would release little heat to warm land during the winter. Ice is less dense than water because of the hydrogen bonding that forms a hexagonal structure in water.
The unique property of water is as a result of its hydrogen bonding. Water is a polar covalent compound. Like most covalent compound, water would have naturally had a very low boiling point.
The intermolecular forces all hydrogen bonding gives water its unique nature.
Hydrogen bond is formed by an attraction between hydrogen one water water molecule and more electronegative atom on another molecule usually oxygen, nitrogen and fluorine.
They form very strong intermolecular interaction responsible for the behavior of water.
The higher specific heat capacity of water is due to this bond. It absorbs a lot of heat and does not release them on time. This causes water release heat during winter.
Water has a hexagonal shape or structure linking each molecules.
learn more;
Hydrogen bonding brainly.com/question/10602513
#learnwithBrainly
Answer:
You are not showing the question, but I believe the answer is cis-3,4-dimethyl-3-hexene.
Explanation:
since the substituents are on same side, it call cis. Followed by the name.
Answer:
Part A = The mass of sulfur is 6.228 grams
Part B = The mass of 1 silver atom is 1.79 * 10^-22 grams
Explanation:
Part A
Step 1: Data given
A mixture of carbon and sulfur has a mass of 9.0 g
Mass of the product = 27.1 grams
X = mass carbon
Y = mass sulfur
x + y = 9.0 grams
x = 9.0 - y
x(molar mass CO2/atomic mass C) + y(molar mass SO2/atomic mass S) = 22.6
(9 - y)*(44.01/12.01) + y(64.07/32.07)
(9-y)(3.664) + y(1.998)
32.976 - 3.664y + 1.998y = 22.6
-1.666y = -10.376
y = 6.228 = mass sulfur
x = 9.0 - 6.228 = 2.772 grams = mass C
The mass of sulfur is 6.228 grams
Part B
Calculate the mass, in grams, of a single silver atom (mAg = 107.87 amu ).
Calculate moles of 1 silver atom
Moles = 1/ 6.022*10^23
Moles = 1.66*10^-24 moles
Mass = moles * molar mass
Mass = 1.66*10 ^-24 moles *107.87
Mass = 1.79 * 10^-22 grams
The mass of 1 silver atom is 1.79 * 10^-22 grams
NaOH will dissociate as Na+ and OH- in the solution.