One term could be allostasis, the opposite of homeostasis.
Other antonyms of homeostasis, the body's ability to maintain a stable internal environment, include imbalance, instability, etc.
Moles are the division of the mass and the molar mass. The moles of mercury (ii) oxide in the decomposition reaction needed to produce oxygen are 0.781 moles.
<h3>What is a decomposition reaction?</h3>
A decomposition reaction is a breakdown of the reactant into simpler products. The decomposition of mercury (ii) oxide can be shown as:
2HgO(s) → 2Hg(l) + O₂(g)
From the reaction, it can be said that 2 moles of mercury (ii) oxide decomposes to produce 1 mole of oxygen.
The moles of oxygen that needs to be produced are calculated as:
Moles = mass ÷ molar mass
= 12.5 gm ÷ 32 gm/mol
= 0.39 moles
0.39 moles of oxygen are needed to be produced.
From the stoichiometric coefficient of the reaction, the moles of HgO is calculated as: 2 × 0.39 = 0.781 moles
Therefore, 0.781 moles of HgO are required in the reaction.
Learn more about moles here:
brainly.com/question/3801333
#SPJ4
Answer:
5. Selenium, because it does not have a stable, half-filled p subshell and adding an electron does not decrease its stability.
Explanation:
Electron affinity is the amount of energy released when an isolated gaseous atom accepts electron to form the corresponding anion.
Selenium:-
The electronic configuration of the element is:-
![[Ar]3d^{10}4s^24p^4](https://tex.z-dn.net/?f=%5BAr%5D3d%5E%7B10%7D4s%5E24p%5E4)
Arsenic:-
The electronic configuration of the element is:-
![[Ar]3d^{10}4s^24p^3](https://tex.z-dn.net/?f=%5BAr%5D3d%5E%7B10%7D4s%5E24p%5E3)
The 4p orbital in case of arsenic is half filled which makes the element having more stability as compared to selenium.
Thus, selenium has higher electron affinity because adding electron does not decrease the stability as in case of arsenic.
Answer:
Have only single bonds.
Explanation:
Hello,
In this case, we need to remember that saturation is a state at which a carbon chain contains no insaturations, that is neither double nor triple bonds such case are alkenes and alkynes, but saturations only which are characterized by the presence of single bonds between adjacent carbon atoms. Such is the case of ethane (CH₃-CH₃), propane (CH₃-CH₂-CH₃), butane (CH₃-CH₂-CH₂-CH₃) and so on.
Best regards.