Answer:
Reaches max height at t = 2.42s.
Explanation:
I've assumed we are neglecting air resistance. If not let me know and I'll update.
We want to examine the behaviour of the ball in the y-direction. In the absence of air resistance the only force acting on the ball is gravity, which produces an acceleration in the negative y direction.
<h2>Question: </h2>
The nearpoint of an eye is 151 cm. A corrective lens is to be used to allow this eye to clearly focus on objects 25 cm in front of it. What should be the focal length of this lens?
Answer:
29.96cm
Explanation:
Using the corrective lens, the image should be formed at the front of the eye and be upright and virtual.
Now using the lens equation as follows;
-------------(i)
Where;
f = focal length of the lens
v = image distance as seen by the lens
u = object distance from the lens
From the question;
v = -151cm [-ve since the image formed is virtual]
u = 25cm
Rewrite equation (i) to have;

Substitute the values of v and u into the equation;


f = 29.96cm
The focal length should be 29.96cm
Answer:
W = 200 J
Explanation:
Work will be equal to the change in kinetic energy
W = ½mv² - 0
W = ½(0.010)200²
W = 200 J
Answer:
The same number of atoms of each element must appear on both sides of a chemical equation. However, simply writing down the chemical formulas of reactants and products does not always result in equal numbers of atoms. You have to balance the equation to make the number of atoms equal on each side of an equation.
Explanation:
I hope thats what u needed.