The level in the beaker will increase because the volumes of the spheres will also be added to the volume of the water. First, we must determine the volume of each sphere. For this, we will use:
density = mass / volume
We can check the density of both aluminum and iron in literature, and given the mass, we may obtain the volume.
Aluminum:
Density = 2.70 g/ml
Mass = 20.4 g
Volume = 20.4 / 2.7 = 7.56 ml
Iron:
Density = 7.87 g/ml
Mass = 49.4 g
Volume = 49.4 / 7.87 = 6.28 ml
Now, we add these volumes to the volume of water present:
75.2 + 6.28 + 7.56 = 89.04
The new level will be 89.0 ml
Answer:
14.5L
Explanation:
The following data were obtained from the question:
V1 = 14.1L
T1 = 13.9°C = 13.9 + 273 = 286.9K
T2 = 22°C = 22 + 273 = 295K
V2 =?
Using charles' law: V1/T1 = V2 /T2, we can obtain the new volume as follows:
14.1/286.9 = V2 /295
Cross multiply to express in linear form
286.9 x V2 = 14.1 x 295
Divide both side by 286.9
V2 = (14.1 x 295) / 286.9
V2 = 14.5L
Therefore, the new volume = 14.5L
Answer:
Answer is D. All of the above
To cause death within hours of exposure to radiation, the dose needs to be very high, 10Gy or higher, while 4-5Gy will kill within 60 days, and less than 1.5-2Gy will not be lethal in the short term. However all doses, no matter how small, carry a finite risk of cancer and other diseases. Patients exposed to radiation between 8 to 30 Gy experience nausea and severe diarrhea within an hour, and they die between 2 days and 2 weeks after exposure. Absorbed doses greater than 30 Gy cause neurological damage