1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
WINSTONCH [101]
3 years ago
12

Which of the summation properties or formulas require the lower index to be 1? Check all that apply.

Mathematics
1 answer:
Talja [164]3 years ago
3 0

Answer:

all but the fourth option

Step-by-step explanation:

pre-calc edg 2020

You might be interested in
Fully factorize<br><br> 6xy-2x+3z-9zy
Luden [163]

Answer:

(2x−3z)(3y−1)

Step-by-step explanation:
6xy-2x+3z-9zy
2x(2xy-1)+3z-9zy
2x(-1+3y)+3z(1-3y)

(2x−3z)(3y−1)

3 0
2 years ago
What is 196 classified as
pashok25 [27]

Answer:

it is so unclear to say . If any more information is given, then only it can be answered. I don't think 196 is so special to be classified.

5 0
3 years ago
How many hours and minutes from noon to a quarter to four in the afternoon?
Alex_Xolod [135]
It would be 3:45 because 12:00 + 3:00= 3:00+0:45=3:45 and if u were to add another quarter (15mins) itd be 4:00
3 0
3 years ago
Find the accumulated value of an investment of for years at an interest rate of if the money is a. compounded​ semiannually; b.
neonofarm [45]

Answer:

I dont know ask your mom or dad or sum to help u-

Step-by-step explanation:

3 0
3 years ago
Hitunglah nilai x ( jika ada ) yang memenuhi persamaan nilai mutlak berikut . Jika tidak ada nilai x yang memenuhi , berikan ala
Julli [10]

(a). The solutions are 0 and ⁸/₃.

(b). The solutions are 1 and ¹³/₃.

(c). The equation has no solution.

(d). The only solution is ²¹/₂₀.

(e). The equation has no solution.

<h3>Further explanation</h3>

These are the problems with the absolute value of a function.

For all real numbers x,

\boxed{ \ |f(x)|=\left \{ {{f(x), for \ f(x) \geq 0} \atop {-f(x), for \ f(x) < 0}} \right. \ }

<u>Problem (a)</u>

|4 – 3x| = |-4|

|4 – 3x| = 4

<u>Case 1</u>

\boxed{ \ 4 - 3x \geq 0 \ } \rightarrow \boxed{ \ 4\geq 3x \ } \rightarrow \boxed{ \ x\leq \frac{4}{3} \ }

For 4 – 3x = 4

Subtract both sides by four.

-3x = 0

Divide both sides by -3.

x = 0

Since \boxed{ \ 0\leq \frac{4}{3} \ }, x = 0 is a solution.

<u>Case 2</u>

\boxed{ \ 4 - 3x < 0 \ } \rightarrow \boxed{ \ 4 < 3x \ } \rightarrow \boxed{ \ x > \frac{4}{3} \ }

For -(4 – 3x) = 4

-4 + 3x = 4

Add both sides by four.

3x = 8

Divide both sides by three.

x = \frac{8}{3}

Since \boxed{ \ \frac{8}{3} > \frac{4}{3} \ }, \boxed{ \ x = \frac{8}{3} \ } is a solution.

Hence, the solutions are \boxed{ \ 0 \ and \ \frac{8}{3} \ }  

————————

<u>Problem (b)</u>

2|3x - 8| = 10

Divide both sides by two.

|3x - 8| = 5  

<u>Case 1</u>

\boxed{ \ 3x - 8 \geq 0 \ } \rightarrow \boxed{ \ 3x\geq 8 \ } \rightarrow \boxed{ \ x\geq \frac{8}{3} \ }

For 3x - 8 = 5

Add both sides by eight.

3x = 13

Divide both sides by three.

x = \frac{13}{3}

Since \boxed{ \ \frac{13}{3} \geq \frac{4}{3} \ }, \boxed{ \ x = \frac{13}{3} \ } is a solution.

<u>Case 2</u>

\boxed{ \ 3x - 8 < 0 \ } \rightarrow \boxed{ \ 3x < 8 \ } \rightarrow \boxed{ \ x < \frac{8}{3} \ }

For -(3x – 8) = 5

-3x + 8 = 5

Subtract both sides by eight.

-3x = -3

Divide both sides by -3.

x = 1  

Since \boxed{ \ 1 < \frac{8}{3} \ }, \boxed{ \ x = 1 \ } is a solution.

Hence, the solutions are \boxed{ \ 1 \ and \ \frac{13}{3} \ }  

————————

<u>Problem (c)</u>

2x + |3x - 8| = -4

Subtracting both sides by 2x.

|3x - 8| = -2x – 4

<u>Case 1</u>

\boxed{ \ 3x - 8 \geq 0 \ } \rightarrow \boxed{ \ 3x\geq 8 \ } \rightarrow \boxed{ \ x\geq \frac{8}{3} \ }

For 3x – 8 = -2x – 4

3x + 2x = 8 – 4

5x = 4

x = \frac{4}{5}

Since \boxed{ \ \frac{4}{5} \ngeq \frac{8}{3} \ }, \boxed{ \ x = \frac{4}{5} \ } is not a solution.

<u>Case 2</u>

\boxed{ \ 3x - 8 < 0 \ } \rightarrow \boxed{ \ 3x < 8 \ } \rightarrow \boxed{ \ x < \frac{8}{3} \ }

For -(3x - 8) = -2x – 4

-3x + 8 = -2x – 4

2x – 3x = -8 – 4

-x = -12

x = 12

Since \boxed{ \ 12 \nless \frac{8}{3} \ }, \boxed{ \ x = 12 \ } is not a solution.

Hence, the equation has no solution.

————————

<u>Problem (d)</u>

5|2x - 3| = 2|3 - 5x|  

Let’s take the square of both sides. Then,

[5(2x - 3)]² = [2(3 - 5x)]²

(10x – 15)² = (6 – 10x)²

(10x - 15)² - (6 - 10x)² = 0

According to this formula \boxed{ \ a^2 - b^2 = (a + b)(a - b) \ }

[(10x - 15) + (6 - 10x)][(10x - 15) - (6 - 10x)]] = 0

(-9)(20x - 21) = 0

Dividing both sides by -9.

20x - 21 = 0

20x = 21

x = \frac{21}{20}

The only solution is \boxed{ \ \frac{21}{20} \ }

————————

<u>Problem (e)</u>

2x + |8 - 3x| = |x - 4|

We need to separate into four cases since we don’t know whether 8 – 3x and x – 4 are positive or negative.  We cannot square both sides because there is a function of 2x.

<u>Case 1</u>

  • 8 – 3x is positive  (or 8 - 3x > 0)
  • x – 4 is positive  (or x - 4 > 0)

2x + 8 – 3x = x – 4

8 – x = x – 4

-2x = -12

x = 6

Substitute x = 6 into 8 – 3x ⇒ 8 – 3(6) < 0, it doesn’t work, even though when we substitute x = 6 into x - 4 it does work.

<u>Case 2</u>

  • 8 – 3x is positive  (or 8 - 3x > 0)
  • x – 4 is negative  (or x - 4 < 0)

2x + 8 – 3x = -(x – 4)

8 – x = -x + 4

x – x =  = 4 - 8

It cannot be determined.

<u>Case 3</u>

  • 8 – 3x is negative (or 8  - 3x < 0)
  • x – 4 is positive. (or x - 4 > 0)

2x + (-(8 – 3x)) = x – 4

2x – 8 + 3x = x - 4

5x – x = 8 – 4

4x = 4

x = 1

Substitute x = 1 into 8 - 3x, \boxed{ \ 8 - 3(1) \nless 0 \ }, it doesn’t work. Likewise, when we substitute x = 1 into x – 4, \boxed{ \ 1 - 4 \not> 0 \ }

<u>Case 4</u>

  • 8 – 3x is negative (or 8 - 3x < 0)
  • x – 4 is negative (or x - 4 < 0)

2x + (-(8 – 3x)) = -(x – 4)

2x – 8 + 3x = -x + 4

5x + x = 8 – 4

6x = 4

\boxed{ \ x=\frac{4}{6} \rightarrow x = \frac{2}{3} \ }

Substitute x = \frac{2}{3} \ into \ 8-3x, \boxed{ \ 8 - 3 \bigg(\frac{2}{3}\bigg) \not< 0 \ }, it doesn’t work. Even though when we substitute x = \frac{2}{3} \ into \ x-4, \boxed{ \ \bigg(\frac{2}{3}\bigg) - 4 < 0 \ } it does work.

Hence, the equation has no solution.

<h3>Learn more</h3>
  1. The inverse of a function brainly.com/question/3225044
  2. The piecewise-defined functions brainly.com/question/9590016
  3. The composite function brainly.com/question/1691598

Keywords: hitunglah nilai x, the equation, absolute  value of the function, has no solution, case, the only solution

5 0
3 years ago
Read 2 more answers
Other questions:
  • Predict the value of 27 1/3?
    9·1 answer
  • bill is on the school archery team. the target has a center bull's-eye and two rings around the bull's-eye. the table gives the
    14·1 answer
  • An emperor penguin is 45 inches tall. It is 24 inches taller than a rockhopper penguin. Write and solve an equation to find the
    7·2 answers
  • Find the area of a TV screen with a width = 40 inches and height = 32 inches
    9·2 answers
  • PLEASE HELP!!! I attached a snip of my question
    13·1 answer
  • Use the given data valuesâ (a sample of female arm circumferences inâ centimeters) to identify the corresponding z scores that a
    11·1 answer
  • Please answer whoever answer correct gets a brainlest Which character trait of Kim’s does the narration revel in this passage
    5·2 answers
  • 7. (ASV, Exercise 2.20 ) - 3 points. A fair die is rolled repeatedly. Use precise notation of probabilities of events and random
    10·1 answer
  • Can someone help me find the answer
    12·1 answer
  • You scored 80 points on your first math test. On the next test you scored 96 points. What is the percent increase?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!