<u>Given:</u>
Change in internal energy = ΔU = -5084.1 kJ
Change in enthalpy = ΔH = -5074.3 kJ
<u>To determine:</u>
The work done, W
<u>Explanation:</u>
Based on the first law of thermodynamics,
ΔH = ΔU + PΔV
the work done by a gas is given as:
W = -PΔV
Therefore:
ΔH = ΔU - W
W = ΔU-ΔH = -5084.1 -(-5074.3) = -9.8 kJ
Ans: Work done is -9.8 kJ
Answer:
70.0°C
Explanation:
We are given;
- Amount of heat generated by propane as 104.6 kJ or 104600 Joules
- Mass of water is 500 g
- Initial temperature as 20.0 ° C
We are required to determine the final temperature of water;
Taking the initial temperature is x°C
We know that the specific heat of water is 4.18 J/g°C
Quantity of heat = Mass × specific heat × change in temperature
In this case;
Change in temp =(x-20)° C
Therefore;
104600 J = 500 g × 4.18 J/g°C × (x-20)
104600 J = 2090x -41800
146400 = 2090 x
x = 70.0479
=70.0 °C
Thus, the final temperature of water is 70.0°C
Answer:
Waves transfer energy from one place to another without transferring matter. Wave motion (the movement of waves) can be shown by the vibrations of a spring or by water waves.
<u><em>Hope this helps!! have a good day! :)</em></u>
Answer:
Volume = 45.62L
Explanation:
Data;
V1 = 54.9L
T1 = 64°C = (64 + 273.15)k = 337.15K
T2 = 7°C = (7 + 273.15)k = 280.15K
V2 = ?
From Charles law,
The volume of a fixed mass of gas is directly proportional to its temperature provided that pressure remains constant
V = KT, K = V / T = V1 / T1 = V2 / T2 = V3 / T3 =.........= Vn / Tn
(54.9 / 337.15) = (V2 / 280.15)
V2 = (54.9 * 280.15) / 337.15
V2 = 45.618L
V2 = 45.62L