Answer:
561 g P₂O₃
Explanation:
To find the mass of P₂O₃, you need to (1) convert moles H₃PO₃ to moles P₂O₃ (via mole-to-mole ratio from equation coefficients) and then (2) convert moles P₂O₃ to grams P₂O₃ (via molar mass). It is important to arrange the ratios/conversions in a way that allows for the cancellation of units. The final answer should have 3 sig figs to match the amount of sig figs in the given value.
Atomic Mass (P): 30.974 g/mol
Atomic Mass (O): 15.998 g/mol
Molar Mass (P₂O₃): 2(30.974 g/mol) + 3(15.998 g/mol)
Molar Mass (P₂O₃): 109.942 g/mol
1 P₂O₃ + 3 H₂O -----> 2 H₃PO₃
10.2 moles H₃PO₃ 1 mole P₂O₃ 109.942 g
---------------------------- x -------------------------- x ------------------- = 561 g P₂O₃
2 moles H₃PO₃ 1 mole
Answer:
1.3×10²³ formula unit
Explanation:
Given data:
Mass of CaCl₂ = 23.8 g
Number of formula unit = ?
Solution:
Number of moles = mass/molar mass
Number of moles = 23.8 g/110.98 g/mol
Number of moles = 0.21 mol
1 mole of any substance contain 6.022×10²³ formula unit
0.21 mol × 6.022×10²³ formula unit / 1mol
1.3×10²³ formula unit
Answer: An ionic bond is a bond that forms between ions with opposite charges.
Explanation:
A chemical bond formed by the transfer of electrons from one atom to another is called an ionic bond.
For example, sodium has electronic distribution as 2, 8, 1 and chlorine has electronic distribution as 2, 8, 7.
In order to attain stability, sodium needs to lose 1 electron and chlorine needs to gain one electron. Therefore, sodium will transfer its one valence electron (forming
ion) to chlorine atom (forming
ion) which leads to the formation of NaCl compound.
Thus, we can conclude that an ionic bond is a bond that forms between ions with opposite charges.
Option one ( which is Aluminium Carbonate ) is the answer