Answer:
It contains 6.02*10^23 molecules
Explanation:
Please mark Brainliest
Thank you!
Half-life time of a reaction is time at which reactant concentration becomes half of its initial value.
Half-life of the first order reaction is 20 min. Rate constant can be calculated as follows:

The rate expression for first order reaction is as follows:

initial number of molecules of reactant are
, time is 100 min thus, putting the values to calculate number of reactant at time 100 min,
![0.03466 min^{-1}=\frac{2.303}{100 min}log\frac{[10^{20}]}{A_{t}}](https://tex.z-dn.net/?f=0.03466%20min%5E%7B-1%7D%3D%5Cfrac%7B2.303%7D%7B100%20min%7Dlog%5Cfrac%7B%5B10%5E%7B20%7D%5D%7D%7BA_%7Bt%7D%7D)
On rearranging,

Or,

Therefore, number of molecules unreacted will be 
Answer:
- The room mantained at a lower temperature will contain more air molecules.
Explanation:
1) Since the two rooms are <em>connected by an open door</em>, you assume pressure equilibrium: the pressure on the two rooms is the same.
2) Since you consider <em>two equal size rooms</em>, both volumes are equal.
3) Assuming ideal gas behavior, pressure (P), temperature (T), volume (V) and number of moles (n) are related by the equation PV = nRT
4) Naming T₁ the lower temperature, T₂ the higher temperature, n₁ the number of moles of air in the room at lower temperature, and n₂ the number of moles of air in the room at higher temperature, you get:
- n₁ T₁ = n₂ T₂, or n₁ / n₂ = T₂ / T₁
5) That means that the amount of molecules (number of moles) is inversely related to the temperature: the higher the temperature the lower the number of moles, and the lower the temperature the greater the number of moles.
Hence, the answer is that <em>the room that contains more air molecules is the room mantained at a lower temperature.</em>
Answer:
Dependent on the element that reacted with carbon
Explanation:
Nuclear fusion is the combination of small atomic nuclei into larger ones usually accompanied with the release of a large amount of energy.
From the problem stated, carbon fuses with another atom. The combined atom would have more nuclear particles in terms of protons and neutrons than the combining atoms. This will eventually make it weigh more than carbon and the atom it combines with. The resulting weight will depend on the combining atoms eventually.