Answer:
To understand the utility in sequence comparison and in the search for proteins that have a common evolutionary origin, you need to be clear about some concepts about how to evolve proteins. The idea that is accepted is that throughout the evolution some species are giving rise to new ones. Behind this is the genetic variation of organisms, that is, the evolution of genomes and their genes, as well as the proteins encoded by them.
Explanation:
Three ways can be distinguished by which genes evolve, and by proteins: mutation, duplication and shuffling of domains. When differences between homologous protein sequences are observed, these differences change to do with the way of life of the organism, an example of this, bacteria that live in hot springs at very high temperatures have proteins with a very high denaturation temperature, and these proteins are usually richer in cysteines. On the other hand, the fact that in positions of the sequences they remain unchanged (preserved positions), means that these have a special importance for the maintenance of the structure or function of the protein and its modification has not been tolerated throughout of evolution
Answer:
1116 g.
Explanation:
The balanced equation for the reaction is given below:
4Na + O₂ —> 2Na₂O
From the balanced equation above,
1 mole of O₂ reacted to produce 2 moles of Na₂O.
Next, we shall determine the theoretical yield of Na₂O. This can be obtained as follow:
From the balanced equation above,
1 mole of O₂ reacted to produce 2 moles of Na₂O.
Therefore, 9 moles of O₂ will react to produce = 9 × 2 = 18 moles of Na₂O.
Finally, we shall determine the mass in 18 moles of Na₂O. This can be obtained as follow:
Mole of Na₂O = 18 moles
Molar mass of Na₂O = (23×2) + 16
= 46 + 16
= 62 g/mol
Mass of Na₂O =?
Mass = mole × molar mass
Mass of Na₂O = 18 × 62
Mass of Na₂O = 1116 g
Thus, the theoretical yield of Na₂O is 1116 g.
Mole is mass (g) / Molar mass (mole/gram)
So to find mass in gram multiply the no.mole by Molar mass