Answer:
Option D: it's ability to lose electrons
Explanation:
Alkali metals are usually discovered in nature. They have highly reactivity at STP conditions (standard temperature and pressure conditions) and easily lose their outermost electron to form positive ions known that have a charge of +1.
Thus, what can determine the extent of reactivity of an alkali metal, is it's ability to lose electrons
Answer:
Cells make up the smallest level of a living organism such as yourself and other living things. The cellular level of an organism is where the metabolic processes occur that keep the organism alive. That is why the cell is called the fundamental unit of life.
Explanation:
put it in your own words
Answer: The average valence electron energy (AVEE) of this element =
1014.2 KJ/ mol or 1.0142mJ/mol.
Explanation:
The average valence electron energy = (number of electrons in s subshell x Ionization energy of that subshell) + (number of electrons in p subshell x Ionization energy of that subshell) / total number of electrons in both subshells of the valence shells.
The 5A elements are non-metals like Nitrogen and Phosphorus with the metallic character increasing as you go down the group, So a new 5A element will have characteristics of its group with 5 valence electron in its outermost shell represented as ns2 np3
Therefore the average valence electron energy (AVEE) of this element will be calculated as
The average valence electron energy = (2 x 1370 kJ/mol + 3 x 777 kJ/mol.) / 5
2740+2331/ 5 =5071/5
=1014.2 KJ/ mol or 1.0142mJ/mol.
Answer:
C. It does not emit electromagnetic radiation.
Explanation:
Right now, Dark Matter is only a theory. Scientist proposed this to counter some of the strange phenomenon with matter in space.
Scientists know little about dark matter. Some say it's one of the driving forces of the universe. Currently, scientists have no way of measuring or identifying dark matter.