<u>Answer: </u>The correct statement is X is the effective nuclear charge, and it increases across a period.
<u>Explanation:</u>
We are given that:
X = number of protons − number of core electrons
Effective nuclear charge is defined as the actual nuclear charge (Z = number of protons) minus the screening effect caused by the electrons present between nucleus and valence electrons. These electrons are the core electrons.
The formula used for the calculation of effective nuclear charge given by Slater is:

where,
= effective nuclear charge
Z = atomic number or actual nuclear charge or number of protons
= Screening constant
The effective nuclear charge increases as we go from left to right in a period because nuclear charge increases with no effective increase in screening constant.
Hence, the correct answer is X is the effective nuclear charge, and it increases across a period.
Answer:
Water has a molar mass of 18.015 g/mol . This means that one mole of water molecules has a mass of 18.015 g . So, to sum this up, 6.022⋅1023 molecules of water will amount to 1 mole of water, which in turn will have a mass of 18.015 g . 2.7144moles H2O ⋅6.022⋅1023molec.
Explanation:
Answer:
0.289J of heat are added
Explanation:
We can relate the change in heat of a substance with its increasing in temperature using the equation:
q = m*ΔT*S
<em>Where Q is change in heat</em>
<em>m is mass of substance (In this case, 0.0948g of water)</em>
<em>ΔT = 0.728°C</em>
<em>S is specific heat (For water, 4.184J/g°C)</em>
Replacing:
q = 0.0948g*0.728°C*4.184J/g°C
q = 0.289J of heat are added
Answer:
V = 240.79 L
Explanation:
Given data:
Volume of butane = ?
Temperature = 293°C
Pressure = 10.934 Kpa
Mass of butane = 33.25 g
Solution:
Number of moles of butane:
Number of moles = mass/ molar mass
Number of moles = 33.25 g/ 58.12 g/mol
Number of mole s= 0.57 mol
Now we will convert the temperature and pressure units.
293 +273 = 566 K
Pressure = 10.934/101 = 0.11 atm
Volume of butane:
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
V = nRT/P
V = 0.57 mol × 0.0821 atm.L/ mol.K ×566 K / 0.11 atm
V = 26.49 L/0.11
V = 240.79 L