Explanation:
<em><u>in fact , we can use newtons second law of motion (see the SPT: Force topic) to calculate the acceleration in each of these cases</u></em>
<em><u>in fact , we can use newtons second law of motion (see the SPT: Force topic) to calculate the acceleration in each of these caseshope it helps you like me plz</u></em>
Answer: Scientists are working on nuclear fusion process. Nuclear fusion is the process in which two atomic nuclei combine to form another nuclei. In the process either energy is absorbed or released due to the difference in the mass of reactants and products.
Explanation:
SrSo4 = Sr(2+) + SO4(2-)
Let’s say that the initial concentration of SrSo4 was 1. ( or we have 1 mole of this reagent).
When The reaction occurs part of SrSo4is dissociated. And we get X mole Sr(2+) and So4(2-).
Ksp=[Sr(2+)]*[SO4(2-)]
X^2=3.2*10^-7
X=5.6*10^-4
Answer:
False
Explanation:
False. The molecules of liquid are hold in the liquid state due to intermolecular forces or Van de Waals forces , without affecting the molecule itself and its atomic bonds (covalent bonds). When the temperature increases the kinetic energy of the molecules is higher , therefore they have more possibilities to escape from the attractive intermolecular forces and go to the gas state.
Note however that this is caused because the intermolecular forces are really weak compared to covalent bonds, therefore is easier to break the first one first and go to the gas state before any covalent bond breaks ( if it happens).
A temperature increase can increase vaporisation rate if any reaction is triggered that decomposes the liquid into more volatile compounds , but nevertheless, this effect is generally insignificant compared with the effect that temperature has in vaporisation due to Van der Waals forces.
Answer:
One
Explanation:
An element is a pure substance in which there are only one kind of atom. Elements are distinct substances that cannot be split up into simpler substances.
Such substances consists of only one kind of atom. There are over a hundred known elements to date.
Generally, as a pure substance, the composition of an element is definite and they are homogenous in all parts.