1. 5 in and 1/3 in: Area = 5/3 in^2
2. 5 in and 4/3 in: Area= 20/3 in^2
3. 5/2 in and 4/3 in: Area=10/3 in^2
4. 7/6 in and 6/7 in: Area = 1 in^2
Step-by-step explanation:
<u>1. 5 in and 1/3 in</u>
Here,

<u>2. 5 in and 4/3 in</u>
Here,

<u>3. 5/2 in and 4/3 in</u>

<u>4. 7/6 in and 6/7 in</u>
<u>Let</u>

<u>Hence,</u>
1. 5 in and 1/3 in: Area = 5/3 in^2
2. 5 in and 4/3 in: Area= 20/3 in^2
3. 5/2 in and 4/3 in: Area=10/3 in^2
4. 7/6 in and 6/7 in: Area = 1 in^2
Keywords: Rectangle, Area
Learn more about rectangles at:
#LearnwithBrainly
Answer:
a. The critcal points are at

b. Then,
is a maximum and
is a minimum
c. The absolute minimum is at
and the absolute maximum is at 
Step-by-step explanation:
(a)
Remember that you need to find the points where

Therefore you have to solve this equation.

From that equation you can factor out
and you would get

And from that you would have
, so
.
And you would also have
.
You can factor that equation as 
Therefore
.
So the critcal points are at

b.
Remember that a function has a maximum at a critical point if the second derivative at that point is negative. Since

Then,
is a maximum and
is a minimum
c.
The absolute minimum is at
and the absolute maximum is at 
2(4x+5)>7x+20 perform indicated multiplication on left side
8x+10>7x+20 subtract 7x from both sides
x+10>20 subtract 10 from both sides
x>10
or in interval notation, x=(10, +oo)
Answer:
876/7
Step-by-step explanation:
Just plug the number 5 into the equation and solve. Remember your Order of Operations (PEMDAS).