Answer:
is the compression in the spring
Explanation:
Given:
- mass of the bullet,

- mass of block,

- stiffness constant of the spring,

- initial velocity of the spring just before it hits the block,

<u>Now since the bullet-mass gets embed into the block, we apply the conservation of momentum as:</u>



Now this kinetic energy of the combined mass gets converted into potential energy of the spring.



is the compression in the spring
Given:
Dy= 20 m
Vi = 5.0 m/s horizontally
A=9.81 m/s^2
Find:
Horizontal displacement
Solution:
D=ViT+(1/2)AT^2
Dy=(1/2)AT^2
T^2=Dy/(1/2)A
T=sqrt(Dy/(1/2)A)
T=sqrt(20/4.905)
T=2.0s
Dx=ViT
Dx=(5.0)(2.0)
Dx=10. meters
Answer:
The initial speed of the cork was 1.57 m/s.
Explanation:
Hi there!
The equation of the horizontal position of the cork in function of time is the following:
x = x0 + v0 · t · cos θ
Where:
x = horizontal position at time t.
x0 = initial horizontal position.
v0 = initial speed of the cork.
t = time.
θ = launching angle.
If we place the origin of the frame of reference at the launching point, then x0 = 0.
We know that at t = 1.25 s, x = 1.50 m. We also know the launching angle so we can solve the equation of horizontal position for the initial speed, v0:
x = v0 · t · cos θ
x / t · cos θ = v0
v0 = 1.50 m / (1.25 s · cos (40.0°)
v0 = 1.57 m/s
The initial speed of the cork was 1.57 m/s.
Answer:
The answer is "The object's speed relative to S can be greater than or less than its speed relative to S', depending on the actual values."
Explanation:
The S' frame and the object are moving in a positive direction. The object is moving with respect to the S frame so the S frame the rest frame
take the velocity of the object with respect to the rest frame as v and the velocity of the S' frame with respect S frame as v2
relative velocity of the object to the S' frame would be
Vrel = v2- v
This means the Vrel of the object with respect to the S' frame is less than the Vrel of the object with respect to the S frame
However is the S' velocity is greater than that of the object then the Vrel of the object with respect to the S' frame is greater than the Vrel of the object with respect to the S frame.
This would mean the second option is the answer, the relative speed of the object depends on the actual values.
Stark contrast to paths on energy surfaces or even mechanistic reactions, rule-based and inductive computational approaches to reaction prediction mostly consider only overall transformations. Overall transformations are general molecular graph rearrangements reflecting only the net change of several successive mechanistic reactions. For example, Figure 1 shows the overall transformation of an alkene interacting with hydrobromic acid to yield the alkyl bromide along with the two elementary reactions which compose the transformation.