1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
fredd [130]
3 years ago
8

Which event demonstrates electromagnetic waves transferring energy?

Physics
2 answers:
Licemer1 [7]3 years ago
6 0

Answer:

d

Explanation:

Citrus2011 [14]3 years ago
4 0

Answer:

Sun heating a car sitting in a parking lot

Explanation:

The sun heating a car sitting in a parking lot is an example of electromagnetic waves transferring energy.

  • Electromagnetic waves are produced from the vibration between electric and magnetic fields.
  • These waves can be propagated through vacuum with no particles inside of them.
  • The sun produces electromagnetic radiation through the process of nuclear fusion.
  • These radiations are used to warm the earth surface.
  • The sun heating a car sitting a parking lot is one vivid example.
You might be interested in
Identify the temperature that is equivalent to 95°F. Use this formula to convert the temperature
Stells [14]
The answer is 35 degrees Celsius. Hope I helped :) Please vote brainliest. 
7 0
4 years ago
Read 2 more answers
At which of the following temperature and pressure levels would a gas be most likely to follow the ideal gas law? A. 0 K and 100
bulgar [2K]
The Ideal Gas Law makes a few assumptions from the Kinetic-Molecular Theory. These assumptions make our work much easier but aren't true under all conditions. The assumptions are,

1) Particles of a gas have virtually no volume and are like single points.
2) Particles exhibit no attractions or repulsions between them.
3) Particles are in continuous, random motion.
4) Collisions between particles are elastic, meaning basically that when they collide, they don't lose any energy.
5) The average kinetic energy is the same for all gasses at a given temperature, regardless of the identity of the gas.

It's generally true that gasses are mostly empty space and their particles occupy very little volume. Gasses are usually far enough apart that they exhibit very little attractive or repulsive forces. When energetic, the gas particles are also in fairly continuous motion, and without other forces, the motion is basically random. Collisions absorb very little energy, and the average KE is pretty close.

Most of these assumptions are dependent on having gas particles very spread apart. When is that true? Think about the other gas laws to remember what properties are related to volume.

A gas with a low pressure and a high temperature will be spread out and therefore exhibit ideal properties.

So, in analyzing the four choices given, we look for low P and high T.

A is at absolute zero, which is pretty much impossible, and definitely does not describe a gas. We rule this out immediately.

B and D are at the same temperature (273 K, or 0 °C), but C is at 100 K, or -173 K. This is very cold, so we rule that out.

We move on to comparing the pressures of B and D. Remember, a low pressure means the particles are more spread out. B has P = 1 Pa, but D has 100 kPa. We need the same units to confirm. Based on our metric prefixes, we know that kPa is kilopascals, and is thus 1000 pascals. So, the pressure of D is five orders of magnitude greater! Thus, the answer is B.
6 0
4 years ago
Describe the difference between the velocity graph made walking at a steady rate and the velocity graph made at an increasing ra
levacccp [35]

Answer:

The difference between the velocity graph made walking at a steady rate means that its the same value in time, that means there's no slope on the graph, so its acceleration is 0

On the other hand, if the velocity is increasing with time, the slope of the graph becomes positive, which means that the acceleration of the particle is positive.

8 0
3 years ago
Which of the following has a negative acceleration?
Volgvan

Answer:

B. A car sits at rest at a stop sign.

6 0
3 years ago
Convert 2kg into SI unit of force​
Doss [256]

Answer:

19.6133 newton.

...?.......

3 0
3 years ago
Other questions:
  • Which pair of equations can describe the path of a particle moving with an acceleration that is perpendicular to the velocity of
    14·1 answer
  • A sports car is advertised to be able to stop in a distance of 50.0 m from a speed is 99.0km/h. What is its acceleration in m/s2
    10·1 answer
  • What is the forms of energy given below.
    8·1 answer
  • What is the fundamental frequency of a 0.003 kg steel piano wire of length 1.3 m and under a tension of 2030 N? Answer in units
    9·1 answer
  • How to make a paper airplane curve down and fly upside down?
    5·2 answers
  • A cyclist intends to cycle up a 7.70o hill whose vertical height is 126m. Assuming the mass of bicycle plus person is 75.0kg, ca
    7·1 answer
  • 5. A car has a kinetic energy of 4.32x105 J when traveling at a speed of 23 m/s. What is
    14·1 answer
  • All of the following are examples of ways to improve energy efficiency of heating systems, except _______.
    12·1 answer
  • Se aplica una fuerza de 8N a un cochecito de 650 gramos. Calcula: a) aceleración, b)espacio recorrido en 5 segundos y c) velocid
    5·1 answer
  • Problema 1. Un Clavadista se lanza desde un trampolín a diferentes alturas 10 m, 3 m, y 1 m, Calcular:
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!