Answer:
Assume two identical cans filled with two types of soup having same mass are rolling down on an inclined plane in same conditions. In terms of inertia different types of soup will indicate different viscosity. The higher viscosity fillings indicates more part of the soup mass is rotating together with the can’s body. This means that for the can with lower viscosity soup has a lower moment of inertia and the can with higher viscosity has higher moment of inertia while the same gravity makes them to roll.
incline angle = θ ; can's mass = m ; Radius of the can's = R , Angular acceleration for Can 1 = α1 ; Angular acceleration for Can 2 = α2
T1 = Inertia of Can with high viscosity soup
T2 = Inertia of Can with low viscosity soup
M1 rolling moment of Can 1
M2 rolling moment of Can 2
equation is given by
T1*α1 = M1 - (a)
T2*α2 = M2 - (b)
M1 = M2 = m*g*R*sin(θ). (c)
as assumed T1 > T2
from the three equation (a), (b) & (c)
the α2 > α1
Angular acceleration of Can 2 is higher than Can 1. Already stated that Can 1 has more viscous soup as compared to Can 2.
It has been stored in fuels such as coal and oil, formed from the fossilized remains of plants or animals over millions of years.
Answer:
10 m/s²
Explanation:
Acceleration: This the rate of change of velocity. The unit of acceleration is m/s²
From the question,
a = (v-u)/t.................... Equation 1
Where a = acceleration of the cheetah, v = final velocity of the cheetah, u = initial velocity of the cheetah, t = time.
Given: u = 0 m/s, v = 25 m/s, t = 2.5 s.
Substitute these values into equation 1
a = (25-0)/2.5
a = 25/2.5
a = 10 m/s²
Hence the acceleration of the cheetah = 10 m/s²
Answer:A::C
Solution :
ΔT=
1
2
TαΔθ
rArr Δt=
ΔT
T1t
But T′≈T
∴Δt=
1
2
αΔθ(t)
=
1
2
×0.000012×20×24×3600
=10.37s
At higher temperture, length of pendulum clock will be more. So, time period will be more and it will lose the time.
Explanation: